Mots-clés : moduli space
@article{SM_2019_210_11_a1,
author = {A. B. Bogatyrev},
title = {Combinatorial analysis of the period mapping: the topology of {2D} fibres},
journal = {Sbornik. Mathematics},
pages = {1531--1562},
year = {2019},
volume = {210},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a1/}
}
A. B. Bogatyrev. Combinatorial analysis of the period mapping: the topology of 2D fibres. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1531-1562. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a1/
[1] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. 2, Mod. Birkhäuser Class., Monodromy and asymptotics of integrals, Reprint of the 1988 transl., Birkhäuser/Springer, New York, 2012, x+492 pp. | DOI | MR | MR | Zbl | Zbl
[2] Yu. Baryshnikov, “Bifurcation diagrams of quadratic differentials”, C. R. Acad. Sci. Paris Sér. I Math., 325:1 (1997), 71–76 | DOI | MR | Zbl
[3] M. Bertola, “Boutroux curves with external field: equilibrium measures without a variational problem”, Anal. Math. Phys., 1:2-3 (2011), 167–211 | DOI | MR | Zbl
[4] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975, ix+228 pp. | DOI | MR | Zbl
[5] A. Bogatyrev, “Fibers of periods map are cells?”, J. Comp. Appl. Math., 153:1-2 (2003), 547–548 | DOI
[6] A. B. Bogatyrev, “Effective approach to least deviation problems”, Sb. Math., 193:12 (2002), 1749–1769 | DOI | DOI | MR | Zbl
[7] A. B. Bogatyrev, “Representation of moduli spaces of curves and calculation of extremal polynomials”, Sb. Math., 194:4 (2003), 469–494 | DOI | DOI | MR | Zbl
[8] A. B. Bogatyrev, “Combinatorial description of a moduli space of curves and of extremal polynomials”, Sb. Math., 194:10 (2003), 1451–1473 | DOI | DOI | DOI | MR | Zbl
[9] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | DOI | MR | MR | Zbl | Zbl
[10] V. P. Burskii, A. S. Zhedanov, “On Dirichlet, Poncelet and Abel problems”, Commun. Pure Appl. Anal., 12:4 (2013), 1587–1633 | DOI | MR | Zbl
[11] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | DOI | MR | Zbl
[12] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys Monogr., 148, Amer. Math. Soc., Providence, RI, 2008, x+323 pp. | DOI | MR | Zbl
[13] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[14] A. Frolova, A. Vasil'ev, “Combinatorial description of jumps in spectral networks defined by quadratic differentials”, Proc. Amer. Math. Soc. (to appear) | DOI
[15] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Geometry of Riemann surfaces and their moduli spaces, Surv. Differ. Geom., 14, Int. Press, Somerville, MA, 2009, 111–129 | DOI | MR | Zbl
[16] S. Grushevsky, I. Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero–Moser curves, arXiv: 1108.4211v1
[17] M. L. Kontsevich, “Intersection theory on the moduli space of curves”, Funct. Anal. Appl., 25:2 (1991), 123–129 | DOI | MR | Zbl
[18] I. M. Krichever, D. H. Phong, “On the integrable geometry of soliton equations and $N=2$ supersymmetric gauge theories”, J. Differential Geom., 45:2 (1997), 349–389 ; arXiv: hep-th/9604199 | DOI | MR | Zbl
[19] A. B. J. Kuijlaars, Man Yue Mo, “The global parametrix in the Riemann–Hilbert steepest descent analysis for orthogonal polynomials”, Comput. Methods Funct. Theory, 11:1 (2011), 161–178 | DOI | MR | Zbl
[20] R. C. Penner, “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–339 | DOI | MR | Zbl
[21] A. Yu. Solynin, “Quadratic differentials and weighted graphs on compact surfaces”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 473–505 | DOI | MR | Zbl
[22] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl
[23] V. A. Vassiliev, Ramified integrals, singularities and lacunas, Math. Appl., 315, Kluwer Acad. Publ., Dordrecht, 1995, xviii+289 pp. | DOI | MR | Zbl