@article{SM_2019_210_11_a0,
author = {V. O. Bivziuk and V. I. Slyn'ko},
title = {Sufficient conditions for the stability of linear periodic impulsive differential equations},
journal = {Sbornik. Mathematics},
pages = {1511--1530},
year = {2019},
volume = {210},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/}
}
TY - JOUR AU - V. O. Bivziuk AU - V. I. Slyn'ko TI - Sufficient conditions for the stability of linear periodic impulsive differential equations JO - Sbornik. Mathematics PY - 2019 SP - 1511 EP - 1530 VL - 210 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/ LA - en ID - SM_2019_210_11_a0 ER -
V. O. Bivziuk; V. I. Slyn'ko. Sufficient conditions for the stability of linear periodic impulsive differential equations. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1511-1530. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/
[1] C. Briat, A. Seuret, “A looped-functional approach for robust stability analysis of linear impulsive systems”, Systems Control Lett., 61:10 (2012), 980–988 | DOI | MR | Zbl
[2] C. Briat, “Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems”, Nonlinear Anal. Hybrid Syst., 24 (2017), 198–226 | DOI | MR | Zbl
[3] A. I. Dvirnyi, V. I. Slyn'ko, “Application of Lyapunov's direct method to the study of the stability of solutions to systems of impulsive differential equations”, Math. Notes, 96:1 (2014), 26–37 | DOI | DOI | MR | Zbl
[4] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Ser. Modern Appl. Math., 6, World Sci. Publ., Teaneck, NJ, 1989, xii+273 pp. | DOI | MR | Zbl
[5] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 14, World Sci. Publ., River Edge, NJ, 1995, ix+462 pp. | DOI | MR | Zbl
[6] Xinzhi Liu, A. Willms, “Stability analysis and applications to large scale impulsive systems: a new approach”, Canad. Appl. Math. Quart., 3:4 (1995), 419–444 | MR | Zbl
[7] A. O. Ignatyev, “On the stability of invariant sets of systems with impulse effect”, Nonlinear Anal., 69:1 (2008), 53–72 | DOI | MR | Zbl
[8] A. I. Dvirny, V. I. Slyn'ko, “Investigating stability using nonlinear quasihomogeneous approximation to differential equations with impulsive action”, Sb. Math., 205:6 (2014), 862–891 | DOI | DOI | MR | Zbl
[9] C. Briat, “Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints”, Automatica, 49:11 (2013), 3449–3457 | DOI | MR | Zbl
[10] V. I. Slyn'ko, “Stability conditions for linear impulsive systems with delay”, Internat. Appl. Mech., 41:6 (2005), 697–703 | DOI | MR | Zbl
[11] V. I. Slyn'ko, O. Tunç, V. O. Bivziuk, “Application of commutator calculus to the study of linear impulsive systems”, Systems Control Lett., 123 (2019), 160–165 | DOI | MR | Zbl
[12] D. Chatterjee, D. Liberzon, “Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions”, SIAM J. Control Optim., 45:1 (2006), 174–206 | DOI | MR | Zbl
[13] Jianquan Lua, D. W. C. Ho, Jinde Cao, “A unified synchronization criterion for impulsive dynamical networks”, Automatica, 46:7 (2010), 1215–1221 | DOI | MR | Zbl
[14] Xiaodi Li, Peng Li, Qing-guo Wang, “Input/output-to-state stability of impulsive switched systems”, Systems Control Lett., 116 (2018), 1–7 | DOI | MR | Zbl
[15] S. Dashkovskiy, A. Mironchenko, “Input-to-state stability of nonlinear impulsive systems”, SIAM J. Control Optim., 51:3 (2013), 1962–1987 | DOI | MR | Zbl
[16] M. A. Müller, D. Liberzon, “Input/output-to-state stability and state-norm estimators for switched nonlinear systems”, Automatica, 48:9 (2012), 2029–2039 | DOI | MR | Zbl
[17] Ticao Jiao, Wei Xing Zheng, Shengyuan Xu, “Stability analysis for a class of random nonlinear impulsive systems”, Internat. J. Robust Nonlinear Control, 27:7 (2017), 1171–1193 | DOI | MR | Zbl
[18] W. Magnus, “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl
[19] A. A. Agrachev, D. Liberzon, “Lie-algebraic stability criteria for switched systems”, SIAM J. Control Optim., 40:1 (2001), 253–269 | DOI | MR | Zbl
[20] A. A. Agrachev, Yu. Baryshnikov, D. Liberzon, “On robust Lie-algebraic stability conditions for switched linear systems”, Systems Control Lett., 61:2 (2012), 347–353 | DOI | MR | Zbl
[21] S. A. Kutepov, “Absolyutnaya ustoichivost bilineinykh sistem s kompaktnym faktorom Levi”, Kibernetika i vychislitelnaya tekhnika, 62 (1984), 28–33 | MR | Zbl
[22] D. Liberzon, J. P. Hespanha, A. S. Morse, “Stability of switched systems: a Lie-algebraic condition”, Systems Control Lett., 37:3 (1999), 117–122 | DOI | MR | Zbl
[23] V. Slyn'ko, C. Tunç, “Stability of abstract linear switched impulsive differential equations”, Automatica, 107 (2019), 433–441 | DOI | MR
[24] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl