Sufficient conditions for the stability of linear periodic impulsive differential equations
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1511-1530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Abstract linear periodic impulsive differential equations are considered. The impulse effect instants are assumed to satisfy the average dwell-time condition (the ADT condition). The stability problem is reduced to studying the stability of an auxiliary abstract impulsive differential equation. This is a perturbed periodic impulsive differential equation, which considerably simplifies the construction of a Lyapunov function. Sufficient conditions for the asymptotic stability of abstract linear periodic impulsive differential equations are obtained. It is shown that the ADT conditions lead to less conservative dwell-time estimates guaranteeing asymptotic stability. Bibliography: 24 titles.
Keywords: abstract linear impulsive differential equations, commutator calculus, Lyapunov stability, Lyapunov functions.
@article{SM_2019_210_11_a0,
     author = {V. O. Bivziuk and V. I. Slyn'ko},
     title = {Sufficient conditions for the stability of linear periodic impulsive differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1511--1530},
     year = {2019},
     volume = {210},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/}
}
TY  - JOUR
AU  - V. O. Bivziuk
AU  - V. I. Slyn'ko
TI  - Sufficient conditions for the stability of linear periodic impulsive differential equations
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1511
EP  - 1530
VL  - 210
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/
LA  - en
ID  - SM_2019_210_11_a0
ER  - 
%0 Journal Article
%A V. O. Bivziuk
%A V. I. Slyn'ko
%T Sufficient conditions for the stability of linear periodic impulsive differential equations
%J Sbornik. Mathematics
%D 2019
%P 1511-1530
%V 210
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/
%G en
%F SM_2019_210_11_a0
V. O. Bivziuk; V. I. Slyn'ko. Sufficient conditions for the stability of linear periodic impulsive differential equations. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1511-1530. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a0/

[1] C. Briat, A. Seuret, “A looped-functional approach for robust stability analysis of linear impulsive systems”, Systems Control Lett., 61:10 (2012), 980–988 | DOI | MR | Zbl

[2] C. Briat, “Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems”, Nonlinear Anal. Hybrid Syst., 24 (2017), 198–226 | DOI | MR | Zbl

[3] A. I. Dvirnyi, V. I. Slyn'ko, “Application of Lyapunov's direct method to the study of the stability of solutions to systems of impulsive differential equations”, Math. Notes, 96:1 (2014), 26–37 | DOI | DOI | MR | Zbl

[4] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Ser. Modern Appl. Math., 6, World Sci. Publ., Teaneck, NJ, 1989, xii+273 pp. | DOI | MR | Zbl

[5] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 14, World Sci. Publ., River Edge, NJ, 1995, ix+462 pp. | DOI | MR | Zbl

[6] Xinzhi Liu, A. Willms, “Stability analysis and applications to large scale impulsive systems: a new approach”, Canad. Appl. Math. Quart., 3:4 (1995), 419–444 | MR | Zbl

[7] A. O. Ignatyev, “On the stability of invariant sets of systems with impulse effect”, Nonlinear Anal., 69:1 (2008), 53–72 | DOI | MR | Zbl

[8] A. I. Dvirny, V. I. Slyn'ko, “Investigating stability using nonlinear quasihomogeneous approximation to differential equations with impulsive action”, Sb. Math., 205:6 (2014), 862–891 | DOI | DOI | MR | Zbl

[9] C. Briat, “Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints”, Automatica, 49:11 (2013), 3449–3457 | DOI | MR | Zbl

[10] V. I. Slyn'ko, “Stability conditions for linear impulsive systems with delay”, Internat. Appl. Mech., 41:6 (2005), 697–703 | DOI | MR | Zbl

[11] V. I. Slyn'ko, O. Tunç, V. O. Bivziuk, “Application of commutator calculus to the study of linear impulsive systems”, Systems Control Lett., 123 (2019), 160–165 | DOI | MR | Zbl

[12] D. Chatterjee, D. Liberzon, “Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions”, SIAM J. Control Optim., 45:1 (2006), 174–206 | DOI | MR | Zbl

[13] Jianquan Lua, D. W. C. Ho, Jinde Cao, “A unified synchronization criterion for impulsive dynamical networks”, Automatica, 46:7 (2010), 1215–1221 | DOI | MR | Zbl

[14] Xiaodi Li, Peng Li, Qing-guo Wang, “Input/output-to-state stability of impulsive switched systems”, Systems Control Lett., 116 (2018), 1–7 | DOI | MR | Zbl

[15] S. Dashkovskiy, A. Mironchenko, “Input-to-state stability of nonlinear impulsive systems”, SIAM J. Control Optim., 51:3 (2013), 1962–1987 | DOI | MR | Zbl

[16] M. A. Müller, D. Liberzon, “Input/output-to-state stability and state-norm estimators for switched nonlinear systems”, Automatica, 48:9 (2012), 2029–2039 | DOI | MR | Zbl

[17] Ticao Jiao, Wei Xing Zheng, Shengyuan Xu, “Stability analysis for a class of random nonlinear impulsive systems”, Internat. J. Robust Nonlinear Control, 27:7 (2017), 1171–1193 | DOI | MR | Zbl

[18] W. Magnus, “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl

[19] A. A. Agrachev, D. Liberzon, “Lie-algebraic stability criteria for switched systems”, SIAM J. Control Optim., 40:1 (2001), 253–269 | DOI | MR | Zbl

[20] A. A. Agrachev, Yu. Baryshnikov, D. Liberzon, “On robust Lie-algebraic stability conditions for switched linear systems”, Systems Control Lett., 61:2 (2012), 347–353 | DOI | MR | Zbl

[21] S. A. Kutepov, “Absolyutnaya ustoichivost bilineinykh sistem s kompaktnym faktorom Levi”, Kibernetika i vychislitelnaya tekhnika, 62 (1984), 28–33 | MR | Zbl

[22] D. Liberzon, J. P. Hespanha, A. S. Morse, “Stability of switched systems: a Lie-algebraic condition”, Systems Control Lett., 37:3 (1999), 117–122 | DOI | MR | Zbl

[23] V. Slyn'ko, C. Tunç, “Stability of abstract linear switched impulsive differential equations”, Automatica, 107 (2019), 433–441 | DOI | MR

[24] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl