A sliceness criterion for odd free knots
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1493-1509
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of concordance and cobordism of knots is a well-known classical problem in low-dimensional topology. The purpose of this paper is to show that for odd free knots, that is, free knots with all intersections odd, the question of whether the knot is slice (concordant to a trivial knot) can be answered effectively by analysing pairing of the chords in a knot diagram. Bibliography: 8 titles.
Keywords: free knot, parity, sliceness, cobordism
Mots-clés : four-valent graph.
@article{SM_2019_210_10_a6,
     author = {V. O. Manturov and D. A. Fedoseev},
     title = {A~sliceness criterion for odd free knots},
     journal = {Sbornik. Mathematics},
     pages = {1493--1509},
     year = {2019},
     volume = {210},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/}
}
TY  - JOUR
AU  - V. O. Manturov
AU  - D. A. Fedoseev
TI  - A sliceness criterion for odd free knots
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1493
EP  - 1509
VL  - 210
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/
LA  - en
ID  - SM_2019_210_10_a6
ER  - 
%0 Journal Article
%A V. O. Manturov
%A D. A. Fedoseev
%T A sliceness criterion for odd free knots
%J Sbornik. Mathematics
%D 2019
%P 1493-1509
%V 210
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/
%G en
%F SM_2019_210_10_a6
V. O. Manturov; D. A. Fedoseev. A sliceness criterion for odd free knots. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1493-1509. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/

[1] V. O. Manturov, “Parity in knot theory”, Sb. Math., 201:5 (2010), 693–733 | DOI | DOI | MR | Zbl

[2] V. O. Manturov, “Parity and cobordism of free knots”, Sb. Math., 203:2 (2012), 196–223 | DOI | DOI | MR | Zbl

[3] V. Turaev, “Topology of words”, Proc. Lond. Math. Soc. (3), 95:2 (2007), 360–412 | DOI | MR | Zbl

[4] V. O. Manturov, “An almost classification of free knots”, Dokl. Math., 88:2 (2013), 556–558 | DOI | DOI | MR | Zbl

[5] L. H. Kauffman, V. O. Manturov, “A graphical construction of the $\operatorname{sl}(3)$ invariant for virtual knots”, Quantum Topol., 5:4 (2014), 523–539 | DOI | MR | Zbl

[6] M. W. Chrisman, V. O. Manturov, “Fibered knots and virtual knots”, J. Knot Theory Ramifications, 22:12 (2013), 1341003, 23 pp. | DOI | MR | Zbl

[7] D. A. Fedoseev, V. O. Manturov, “Parities on 2-knots and 2-links”, J. Knot Theory Ramifications, 25:14 (2016), 1650079, 24 pp. | DOI | MR | Zbl

[8] B. K. Winter, “Virtual links in arbitrary dimensions”, J. Knot Theory Ramifications, 24:14 (2015), 1550062, 38 pp. | DOI | MR | Zbl