A~sliceness criterion for odd free knots
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1493-1509

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of concordance and cobordism of knots is a well-known classical problem in low-dimensional topology. The purpose of this paper is to show that for odd free knots, that is, free knots with all intersections odd, the question of whether the knot is slice (concordant to a trivial knot) can be answered effectively by analysing pairing of the chords in a knot diagram. Bibliography: 8 titles.
Keywords: free knot, parity, sliceness, cobordism
Mots-clés : four-valent graph.
@article{SM_2019_210_10_a6,
     author = {V. O. Manturov and D. A. Fedoseev},
     title = {A~sliceness criterion for odd free knots},
     journal = {Sbornik. Mathematics},
     pages = {1493--1509},
     publisher = {mathdoc},
     volume = {210},
     number = {10},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/}
}
TY  - JOUR
AU  - V. O. Manturov
AU  - D. A. Fedoseev
TI  - A~sliceness criterion for odd free knots
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1493
EP  - 1509
VL  - 210
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/
LA  - en
ID  - SM_2019_210_10_a6
ER  - 
%0 Journal Article
%A V. O. Manturov
%A D. A. Fedoseev
%T A~sliceness criterion for odd free knots
%J Sbornik. Mathematics
%D 2019
%P 1493-1509
%V 210
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/
%G en
%F SM_2019_210_10_a6
V. O. Manturov; D. A. Fedoseev. A~sliceness criterion for odd free knots. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1493-1509. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a6/