Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1380-1427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Vector-valued functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity are investigated. The concept of the Fourier series of a function (distribution), periodic or almost periodic at infinity, with coefficients that are functions (distributions) slowly varying at infinity, is introduced. The properties of the Fourier series are investigated and an analogue of Wiener's theorem on absolutely convergent Fourier series is obtained for functions periodic at infinity. Special attention is given to criteria ensuring that solutions of differential or difference equations are periodic or almost periodic at infinity. The central results involve theorems on the asymptotic behaviour of a bounded operator semigroup whose generator has no limit points on the imaginary axis. In addition, the concept of an asymptotically finite-dimensional operator semigroup is introduced and a theorem on the structure of such a semigroup is proved. Bibliography: 39 titles.
Keywords: function periodic at infinity, function almost periodic at infinity, homogeneous space, operator semigroup, differential equation.
@article{SM_2019_210_10_a2,
     author = {A. G. Baskakov and V. E. Strukov and I. I. Strukova},
     title = {Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity},
     journal = {Sbornik. Mathematics},
     pages = {1380--1427},
     year = {2019},
     volume = {210},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - V. E. Strukov
AU  - I. I. Strukova
TI  - Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1380
EP  - 1427
VL  - 210
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/
LA  - en
ID  - SM_2019_210_10_a2
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A V. E. Strukov
%A I. I. Strukova
%T Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity
%J Sbornik. Mathematics
%D 2019
%P 1380-1427
%V 210
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/
%G en
%F SM_2019_210_10_a2
A. G. Baskakov; V. E. Strukov; I. I. Strukova. Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1380-1427. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/

[1] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl

[2] A. G. Baskakov, Nekotorye voprosy teorii vektornykh pochti periodicheskikh funktsii, Diss. ... kand. fiz.-matem. nauk, VGU, Voronezh, 1973, 100 pp.

[3] A. I. Shtern, “Almost periodic functions and representations in locally convex spaces”, Russian Math. Surveys, 60:3 (2005), 489–557 | DOI | DOI | MR | Zbl

[4] S. A. Telyakovskii, “On the rate of convergence in $L$ of Fourier sine series with monotone coefficients”, Math. Notes, 100:3 (2016), 472–476 | DOI | DOI | MR | Zbl

[5] K. V. Runovskii, “Trigonometric polynomial approximation, $K$-functionals and generalized moduli of smoothness”, Sb. Math., 208:2 (2017), 237–254 | DOI | DOI | MR | Zbl

[6] P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094 | DOI | DOI | MR | Zbl

[7] V. V. Chepyzhov, “Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics”, Russian Math. Surveys, 68:2 (2013), 349–382 | DOI | DOI | MR | Zbl

[8] E. Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Oper. Theory Adv. Appl., 173, Birkhäuser Verlag, Basel, 2007, viii+174 pp. | DOI | MR | Zbl

[9] K. V. Storozhuk, “A condition for asymptotic finite-dimensionality of an operator semigroup”, Siberian Math. J., 52:6 (2011), 1104–1107 | DOI | MR | Zbl

[10] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. II, Grundlehren Math. Wiss., 152, Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Springer-Verlag, New York-Berlin, 1970, ix+771 pp. | MR | MR | Zbl

[11] A. G. Baskakov, I. A. Krishtal, “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl

[12] A. G. Baskakov, Garmonicheskii analiz v banakhovykh modulyakh i spektralnaya teoriya lineinykh operatorov, Izd. dom VGU, Voronezh, 2016, 152 pp.

[13] A. G. Baskakov, “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N.Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[14] A. G. Baskakov, “Spectral criteria for almost periodicity of solutions of functional equations”, Math. Notes, 24:2 (1978), 606–612 | DOI | MR | Zbl

[15] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96 (1956), 1–66 | DOI | MR | Zbl

[16] A. G. Baskakov, “Harmonic analysis of cosine and exponential operator-valued functions”, Math. USSR-Sb., 52:1 (1985), 63–90 | DOI | MR | Zbl

[17] A. G. Baskakov, “Inequalities of Bernshtein type in abstract harmonic analysis”, Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl

[18] A. G. Baskakov, “Spectral synthesis in Banach modules over commutative Banach algebras”, Math. Notes, 34:4 (1983), 776–782 | DOI | MR | Zbl

[19] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterr. J. Math., 13:5 (2016), 2443–2462 | DOI | MR | Zbl

[20] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monogr. Math., 96, 2nd ed., Birkhäuser/Springer Basel AG, Basel, 2011, xii+539 pp. | DOI | MR | Zbl

[21] A. G. Baskakov, “Operator ergodic theorems and complementability of subspaces of Banach spaces”, Soviet Math. (Iz. VUZ), 32:11 (1988), 1–14 | MR | Zbl

[22] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[23] A. G. Baskakov, “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | DOI | MR | Zbl

[24] B. M. Levitan, “Ob integrirovanii pochti-periodicheskikh funktsii so znacheniyami iz banakhova prostranstva”, Izv. AN SSSR. Ser. matem., 30:5 (1966), 1101–1110 | MR | Zbl

[25] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, RI, 1957, xii+808 pp. | MR | MR | Zbl

[26] K.-J. Engel, R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006, x+247 pp. | DOI | MR | Zbl

[27] A. G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl

[28] A. G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl

[29] A. G. Baskakov, “Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[30] A. G. Baskakov, V. B. Didenko, “On invertibility states of differential and difference operators”, Izv. Math., 82:1 (2018), 1–13 | DOI | DOI | MR | Zbl

[31] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR

[32] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl

[33] A. G. Baskakov, N. S. Kaluzhina, “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | DOI | MR | Zbl

[34] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl

[35] N. Wiener, The Fourier integral and certain of its applications, Univ. Press, Cambridge, 1933, xii+201 pp. | MR | Zbl | Zbl

[36] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999, x+361 pp. | DOI | MR | Zbl

[37] A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242 | DOI | DOI | MR | Zbl

[38] H. Bohr, “Zur theorie der fast periodischen funktionen. I. Eine verallgemeinerung der theorie der fourierreihen”, Acta Math., 45:1 (1925), 29–127 | DOI | MR | Zbl

[39] Yu. I. Lyubich, Vũ Quôc Phóng, “Asymptotic stability of linear differential equations in Banach spaces”, Studia Math., 88:1 (1988), 37–42 | DOI | MR | Zbl