@article{SM_2019_210_10_a2,
author = {A. G. Baskakov and V. E. Strukov and I. I. Strukova},
title = {Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity},
journal = {Sbornik. Mathematics},
pages = {1380--1427},
year = {2019},
volume = {210},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/}
}
TY - JOUR AU - A. G. Baskakov AU - V. E. Strukov AU - I. I. Strukova TI - Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity JO - Sbornik. Mathematics PY - 2019 SP - 1380 EP - 1427 VL - 210 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/ LA - en ID - SM_2019_210_10_a2 ER -
%0 Journal Article %A A. G. Baskakov %A V. E. Strukov %A I. I. Strukova %T Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity %J Sbornik. Mathematics %D 2019 %P 1380-1427 %V 210 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/ %G en %F SM_2019_210_10_a2
A. G. Baskakov; V. E. Strukov; I. I. Strukova. Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1380-1427. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a2/
[1] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl
[2] A. G. Baskakov, Nekotorye voprosy teorii vektornykh pochti periodicheskikh funktsii, Diss. ... kand. fiz.-matem. nauk, VGU, Voronezh, 1973, 100 pp.
[3] A. I. Shtern, “Almost periodic functions and representations in locally convex spaces”, Russian Math. Surveys, 60:3 (2005), 489–557 | DOI | DOI | MR | Zbl
[4] S. A. Telyakovskii, “On the rate of convergence in $L$ of Fourier sine series with monotone coefficients”, Math. Notes, 100:3 (2016), 472–476 | DOI | DOI | MR | Zbl
[5] K. V. Runovskii, “Trigonometric polynomial approximation, $K$-functionals and generalized moduli of smoothness”, Sb. Math., 208:2 (2017), 237–254 | DOI | DOI | MR | Zbl
[6] P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094 | DOI | DOI | MR | Zbl
[7] V. V. Chepyzhov, “Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics”, Russian Math. Surveys, 68:2 (2013), 349–382 | DOI | DOI | MR | Zbl
[8] E. Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Oper. Theory Adv. Appl., 173, Birkhäuser Verlag, Basel, 2007, viii+174 pp. | DOI | MR | Zbl
[9] K. V. Storozhuk, “A condition for asymptotic finite-dimensionality of an operator semigroup”, Siberian Math. J., 52:6 (2011), 1104–1107 | DOI | MR | Zbl
[10] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. II, Grundlehren Math. Wiss., 152, Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Springer-Verlag, New York-Berlin, 1970, ix+771 pp. | MR | MR | Zbl
[11] A. G. Baskakov, I. A. Krishtal, “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl
[12] A. G. Baskakov, Garmonicheskii analiz v banakhovykh modulyakh i spektralnaya teoriya lineinykh operatorov, Izd. dom VGU, Voronezh, 2016, 152 pp.
[13] A. G. Baskakov, “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N.Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl
[14] A. G. Baskakov, “Spectral criteria for almost periodicity of solutions of functional equations”, Math. Notes, 24:2 (1978), 606–612 | DOI | MR | Zbl
[15] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96 (1956), 1–66 | DOI | MR | Zbl
[16] A. G. Baskakov, “Harmonic analysis of cosine and exponential operator-valued functions”, Math. USSR-Sb., 52:1 (1985), 63–90 | DOI | MR | Zbl
[17] A. G. Baskakov, “Inequalities of Bernshtein type in abstract harmonic analysis”, Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl
[18] A. G. Baskakov, “Spectral synthesis in Banach modules over commutative Banach algebras”, Math. Notes, 34:4 (1983), 776–782 | DOI | MR | Zbl
[19] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterr. J. Math., 13:5 (2016), 2443–2462 | DOI | MR | Zbl
[20] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monogr. Math., 96, 2nd ed., Birkhäuser/Springer Basel AG, Basel, 2011, xii+539 pp. | DOI | MR | Zbl
[21] A. G. Baskakov, “Operator ergodic theorems and complementability of subspaces of Banach spaces”, Soviet Math. (Iz. VUZ), 32:11 (1988), 1–14 | MR | Zbl
[22] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[23] A. G. Baskakov, “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | DOI | MR | Zbl
[24] B. M. Levitan, “Ob integrirovanii pochti-periodicheskikh funktsii so znacheniyami iz banakhova prostranstva”, Izv. AN SSSR. Ser. matem., 30:5 (1966), 1101–1110 | MR | Zbl
[25] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, RI, 1957, xii+808 pp. | MR | MR | Zbl
[26] K.-J. Engel, R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006, x+247 pp. | DOI | MR | Zbl
[27] A. G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl
[28] A. G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl
[29] A. G. Baskakov, “Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl
[30] A. G. Baskakov, V. B. Didenko, “On invertibility states of differential and difference operators”, Izv. Math., 82:1 (2018), 1–13 | DOI | DOI | MR | Zbl
[31] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR
[32] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | MR | Zbl
[33] A. G. Baskakov, N. S. Kaluzhina, “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | DOI | MR | Zbl
[34] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl
[35] N. Wiener, The Fourier integral and certain of its applications, Univ. Press, Cambridge, 1933, xii+201 pp. | MR | Zbl | Zbl
[36] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999, x+361 pp. | DOI | MR | Zbl
[37] A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242 | DOI | DOI | MR | Zbl
[38] H. Bohr, “Zur theorie der fast periodischen funktionen. I. Eine verallgemeinerung der theorie der fourierreihen”, Acta Math., 45:1 (1925), 29–127 | DOI | MR | Zbl
[39] Yu. I. Lyubich, Vũ Quôc Phóng, “Asymptotic stability of linear differential equations in Banach spaces”, Studia Math., 88:1 (1988), 37–42 | DOI | MR | Zbl