Some properties of embeddings of rearrangement invariant spaces
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1361-1379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E$ and $F$ be rearrangement invariant spaces on $[0,1]$, and let $E\subset F$. This embedding is said to be strict if the functions in the unit ball of the space $E$ have absolutely equicontinuous norms in $F$. For the main classes of rearrangement invariant spaces necessary and sufficient conditions are obtained for an embedding to be strict, and also the relationships this concept has with other properties of embeddings are studied, especially the property of disjoint strict singularity. In the final part of the paper, a characterization of the property of strict embedding in terms of interpolation spaces is obtained. Bibliography: 23 titles.
Keywords: strict embedding, rearrangement invariant (symmetric) space, Lorentz space, (disjointly) strictly singular embedding.
Mots-clés : Marcinkiewicz space
@article{SM_2019_210_10_a1,
     author = {S. V. Astashkin and E. M. Semenov},
     title = {Some properties of embeddings of rearrangement invariant spaces},
     journal = {Sbornik. Mathematics},
     pages = {1361--1379},
     year = {2019},
     volume = {210},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - E. M. Semenov
TI  - Some properties of embeddings of rearrangement invariant spaces
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1361
EP  - 1379
VL  - 210
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a1/
LA  - en
ID  - SM_2019_210_10_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A E. M. Semenov
%T Some properties of embeddings of rearrangement invariant spaces
%J Sbornik. Mathematics
%D 2019
%P 1361-1379
%V 210
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a1/
%G en
%F SM_2019_210_10_a1
S. V. Astashkin; E. M. Semenov. Some properties of embeddings of rearrangement invariant spaces. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1361-1379. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a1/

[1] F. L. Hernández, Y. Raynaud, E. M. Semenov, “Bernstein widths and super strictly singular inclusions”, A panorama of modern operator theory and related topics, Oper. Theory Adv. Appl., 218, Birkhäuser/Springer Basel AG, Basel, 2012, 359–376 | DOI | MR | Zbl

[2] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., Providence, RI, 1979, 298 pp. | DOI | MR | Zbl

[3] F. L. Hernández, D. Rodriguez-Salinas, “On $l^p$-complemented copies in Orlicz spaces. II”, Israel J. Math., 68:1 (1989), 27–55 | DOI | MR | Zbl

[4] S. V. Astashkin, E. M. Semenov, “Strict embeddings of rearrangement invariant spaces”, Dokl. Math., 98:1 (2018), 327–329 | DOI | DOI | Zbl

[5] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[6] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[7] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[8] S. V. Astashkin, Sistema Rademakhera v funktsionalnykh prostranstvakh, Fizmatlit, M., 2017, 549 pp. | Zbl

[9] Yu. A. Brudnyi, N. Ya. Krugliak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland Publishing Co., Amsterdam, 1991, xvi+718 pp. | MR | Zbl

[10] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | MR | Zbl

[11] A. Zygmund, Trigonometric series, v. II, 2nd ed., Cambridge Univ. Press, New York, 1959, vii+354 pp. | MR | MR | Zbl | Zbl

[12] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[13] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[14] S. V. Astashkin, “Disjointly strictly singular inclusions of symmetric spaces”, Math. Notes, 65:1 (1999), 3–12 | DOI | DOI | MR | Zbl

[15] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[16] S. V. Astashkin, “Disjointly homogeneous rearrangement invariant spaces via interpolation”, J. Math. Anal. Appl., 421:1 (2015), 338–361 | DOI | MR | Zbl

[17] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces”, J. Approx. Theory, 13:4 (1975), 395–412 | DOI | MR | Zbl

[18] E. V. Tokarev, “O podprostranstvakh nekotorykh simmetrichnykh prostranstv”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 24, Izd-vo Kharkovsk. un-ta, Kharkov, 1975, 156–161 | MR | Zbl

[19] S. V. Astashkin, “On cones of step functions in rearrangement invariant spaces”, Siberian Math. J., 34:4 (1993), 597–605 | DOI | MR | Zbl

[20] M. Mastyło, “The universal right $K$-property for some interpolation spaces”, Studia Math., 90:2 (1988), 117–128 | DOI | MR | Zbl

[21] L. Maligranda, M. Mastyło, “Note on not-interpolation spaces”, J. Approx. Theory, 56:3 (1989), 333–347 | DOI | MR | Zbl

[22] M. Mastyło, “Interpolation of linear operators in the Köthe dual spaces”, Ann. Mat. Pura Appl. (4), 154 (1989), 231–242 | DOI | MR | Zbl

[23] I. U. Asekritova, “O $\mathscr{K}$-funktsionale pary $(\mathscr{K}_{\Phi_0}(\vec{X}),\mathscr{K}_{\Phi_1}(\vec{X}))$”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Izd-vo Yaroslavsk. gos. un-ta, Yaroslavl, 1980, 3–32 | MR | Zbl