Mots-clés : Marcinkiewicz space
@article{SM_2019_210_10_a1,
author = {S. V. Astashkin and E. M. Semenov},
title = {Some properties of embeddings of rearrangement invariant spaces},
journal = {Sbornik. Mathematics},
pages = {1361--1379},
year = {2019},
volume = {210},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a1/}
}
S. V. Astashkin; E. M. Semenov. Some properties of embeddings of rearrangement invariant spaces. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1361-1379. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a1/
[1] F. L. Hernández, Y. Raynaud, E. M. Semenov, “Bernstein widths and super strictly singular inclusions”, A panorama of modern operator theory and related topics, Oper. Theory Adv. Appl., 218, Birkhäuser/Springer Basel AG, Basel, 2012, 359–376 | DOI | MR | Zbl
[2] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., Providence, RI, 1979, 298 pp. | DOI | MR | Zbl
[3] F. L. Hernández, D. Rodriguez-Salinas, “On $l^p$-complemented copies in Orlicz spaces. II”, Israel J. Math., 68:1 (1989), 27–55 | DOI | MR | Zbl
[4] S. V. Astashkin, E. M. Semenov, “Strict embeddings of rearrangement invariant spaces”, Dokl. Math., 98:1 (2018), 327–329 | DOI | DOI | Zbl
[5] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl
[6] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl
[7] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[8] S. V. Astashkin, Sistema Rademakhera v funktsionalnykh prostranstvakh, Fizmatlit, M., 2017, 549 pp. | Zbl
[9] Yu. A. Brudnyi, N. Ya. Krugliak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland Publishing Co., Amsterdam, 1991, xvi+718 pp. | MR | Zbl
[10] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | MR | Zbl
[11] A. Zygmund, Trigonometric series, v. II, 2nd ed., Cambridge Univ. Press, New York, 1959, vii+354 pp. | MR | MR | Zbl | Zbl
[12] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[13] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl
[14] S. V. Astashkin, “Disjointly strictly singular inclusions of symmetric spaces”, Math. Notes, 65:1 (1999), 3–12 | DOI | DOI | MR | Zbl
[15] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl
[16] S. V. Astashkin, “Disjointly homogeneous rearrangement invariant spaces via interpolation”, J. Math. Anal. Appl., 421:1 (2015), 338–361 | DOI | MR | Zbl
[17] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces”, J. Approx. Theory, 13:4 (1975), 395–412 | DOI | MR | Zbl
[18] E. V. Tokarev, “O podprostranstvakh nekotorykh simmetrichnykh prostranstv”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 24, Izd-vo Kharkovsk. un-ta, Kharkov, 1975, 156–161 | MR | Zbl
[19] S. V. Astashkin, “On cones of step functions in rearrangement invariant spaces”, Siberian Math. J., 34:4 (1993), 597–605 | DOI | MR | Zbl
[20] M. Mastyło, “The universal right $K$-property for some interpolation spaces”, Studia Math., 90:2 (1988), 117–128 | DOI | MR | Zbl
[21] L. Maligranda, M. Mastyło, “Note on not-interpolation spaces”, J. Approx. Theory, 56:3 (1989), 333–347 | DOI | MR | Zbl
[22] M. Mastyło, “Interpolation of linear operators in the Köthe dual spaces”, Ann. Mat. Pura Appl. (4), 154 (1989), 231–242 | DOI | MR | Zbl
[23] I. U. Asekritova, “O $\mathscr{K}$-funktsionale pary $(\mathscr{K}_{\Phi_0}(\vec{X}),\mathscr{K}_{\Phi_1}(\vec{X}))$”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Izd-vo Yaroslavsk. gos. un-ta, Yaroslavl, 1980, 3–32 | MR | Zbl