Carathéodory sets and analytic balayage of measures
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1376-1389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the concept of an analytic balayage of measures introduced by D. Khavinson. New formulae for analytic balayage are obtained in the case when the support of a measure lies inside some Carathéodory compact set, and balayage onto its boundary is considered. The constructions are based on recent results on the boundary behaviour of conformal mappings of the unit disc onto Carathéodory domains. Bibliography: 27 titles.
Keywords: orthogonal measure, conformal mapping.
Mots-clés : Carathéodory domain, Carathéodory compact set, analytic balayage
@article{SM_2018_209_9_a5,
     author = {K. Yu. Fedorovskiy},
     title = {Carath\'eodory sets and analytic balayage of measures},
     journal = {Sbornik. Mathematics},
     pages = {1376--1389},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a5/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - Carathéodory sets and analytic balayage of measures
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1376
EP  - 1389
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a5/
LA  - en
ID  - SM_2018_209_9_a5
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T Carathéodory sets and analytic balayage of measures
%J Sbornik. Mathematics
%D 2018
%P 1376-1389
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a5/
%G en
%F SM_2018_209_9_a5
K. Yu. Fedorovskiy. Carathéodory sets and analytic balayage of measures. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1376-1389. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a5/

[1] D. Khavinson, “F. and M. Riesz theorem, analytic balayage, and problems in rational approximation”, Constr. Approx., 4:4 (1988), 341–356 | DOI | MR | Zbl

[2] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | DOI | MR | Zbl

[3] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Math., 25, 2. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1956, viii+247 pp. | MR | MR | Zbl | Zbl

[4] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[5] E. Abakumov, K. Fedorovskiy, “Analytic balayage of measures, Carathéodory domains, and badly approximable functions in $L^p$”, C. R. Math. Acad. Sci. Paris, 356:8 (2018), 870–874 | DOI

[6] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[7] S. Mazurkiewicz, “Über erreichbare Punkte”, Fund. Math., 26 (1936), 150–155 | DOI | Zbl

[8] G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Math., 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957, xii+438 pp. | MR | MR | Zbl | Zbl

[9] J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl

[10] C. Pommerenke, Univalent functions, With a chapter on quadratic differentials by G. Jensen, Studia Mathematica/Mathematische Lehrbücher, 25, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl

[11] E. Bishop, “The structure of certain measures”, Duke Math. J., 25:2 (1958), 283–289 | DOI | MR | Zbl

[12] E. Bishop, “Boundary measures of analytic differentials”, Duke Math. J., 27:3 (1960), 331–340 | DOI | MR | Zbl

[13] T. W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969, xiii+257 pp. | MR | Zbl | Zbl

[14] S. Ya. Khavinson, “Foundations of the theory of extremal problems for bounded analytic functions and various generalizations of them”, Two papers on extremal problems in complex analysis, Amer. Math. Soc. Transl. Ser. 2, 129, Amer. Math. Soc., Providence, RI, 1986, 1–62 | DOI | Zbl | Zbl

[15] A. B. Aleksandrov, “Badly approximable unimodular functions in weighted $L^p$ spaces”, Comput. Methods Funct. Theory, 4:2 (2004), 315–326 | DOI | MR | Zbl

[16] L. Baratchart, F. L. Nazarov, V. V. Peller, “Analytic approximation of matrix functions in $L^p$”, J. Approx. Theor., 158:2 (2009), 242–278 | DOI | MR | Zbl

[17] R. V. Bessonov, “Analytic approximation in $L^p$ and coinvariant subspaces of the Hardy space”, J. Approx. Theor., 174 (2013), 113–120 | DOI | MR | Zbl

[18] K. M. D'yakonov, “Moduli and arguments of analytic functions from subspaces of $H^p$ that are invariant for the backward shift operator”, Siberian Math. J., 31:6 (1990), 926–939 | DOI | MR | Zbl

[19] D. Khavinson, J. E. McCarthy, H. S. Shapiro, “Best approximation in the mean by analytic and harmonic functions”, Indiana Univ. Math. J., 49:4 (2000), 1481–1514 | DOI | MR | Zbl

[20] S. Ja. Havinson, “On some extremal problems of the theory of analytic functions”, Amer. Math. Soc. Transl. Ser. 2, 32, Amer. Math. Soc., Providence, RI, 1963, 139–154 | DOI | MR | Zbl

[21] T. Nakazi, “Expremal problems in $H^p$”, J. Austral. Math. Soc. Ser. A, 52:1 (1992), 103–110 | DOI | MR | Zbl

[22] V. V. Savchuk, “Best approximation by holomorphic functions. Application to the best polynomial approximation of classes of holomorphic functions”, Ukrainian Math. J., 59:8 (2007), 1163–1183 | DOI | MR | Zbl

[23] S. J. Poreda, “A characterization of badly approximable functions”, Trans. Amer. Math. Soc., 169:7 (1972), 249–256 | DOI | MR | Zbl

[24] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl

[25] J. J. Carmona, K. Yu. Fedorovskiy, “New conditions for uniform approximation by polyanalytic polynomials”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK «Nauka/Interperiodika», M., 2012, 227–241 | MR | Zbl

[26] K. Yu. Fedorovskiy, “Carathéodory domains and Rudin's converse of the maximum modulus principle”, Sb. Math., 206:1 (2015), 161–174 | DOI | DOI | MR | Zbl

[27] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl