Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1351-1375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the stability property of singularities of integrable Hamiltonian systems under integrable perturbations. It is known that among singularities of corank $1$, only singularities of complexity $1$ are stable. As it turns out, in the case of two degrees of freedom, there are both stable and unstable singularities of rank $0$ and complexity $2$. A complete list of singularities of saddle-saddle type of complexity $2$ is known and it consists of 39 pairwise non-equivalent singularities. In this paper we prove a criterion for the stability of multi-dimensional saddle singularities of rank $0$ under component-wise perturbations. Using this criterion, in the case of two degrees of freedom, for each of the 39 singularities of complexity $2$ we obtain an answer to the question of whether this singularity is component-wise stable. For a singularity of saddle-saddle type we analyse the connection between the stability property and the characteristics of its loop molecule. Bibliography: 27 titles.
Keywords: integrable Hamiltonian systems, momentum map, nondegenerate singularities, stability.
@article{SM_2018_209_9_a4,
     author = {A. A. Oshemkov and M. A. Tuzhilin},
     title = {Integrable perturbations of saddle singularities of rank~0 of integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {1351--1375},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a4/}
}
TY  - JOUR
AU  - A. A. Oshemkov
AU  - M. A. Tuzhilin
TI  - Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1351
EP  - 1375
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a4/
LA  - en
ID  - SM_2018_209_9_a4
ER  - 
%0 Journal Article
%A A. A. Oshemkov
%A M. A. Tuzhilin
%T Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 2018
%P 1351-1375
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a4/
%G en
%F SM_2018_209_9_a4
A. A. Oshemkov; M. A. Tuzhilin. Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1351-1375. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a4/

[1] Nguyen Tien Zung, “On the general position property of simple Bott integrals”, Russian Math. Surveys, 45:4 (1990), 179–180 | DOI | MR | Zbl

[2] A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Camb. Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl

[3] G. Kh. Levin, Ustoichivost osobennostei tipa sedlo-sedlo slozhnosti dva, Diplomnaya rabota, MGU im. M. V. Lomonosova, M., 2008

[4] L. M. Lerman, Ya. L. Umanskii, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of $\mathbb{R}^2$ in extended neighborhoods of simple singular points. II”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 479–506 | DOI | MR | Zbl

[5] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl

[6] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[7] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publishers, Luxembourg, 1995, xvi+467 pp. | MR | MR | Zbl | Zbl

[8] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[9] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl

[10] A. T. Fomenko, “Theory of rough classification of integrable nondegenerate Hamiltonian differential equations on four-dimensional manifolds. Application to classical mechanics”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 305–345 | MR | Zbl

[11] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[12] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl

[13] V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Sb. Math., 187:4 (1996), 495–524 | DOI | DOI | MR | Zbl

[14] V. V. Korneev, “Predstavlenie chetyrekhmernoi osobennosti tipa sedlo-sedlo v vide pochti pryamogo proizvedeniya dvumernykh atomov. Sluchai slozhnosti dva”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 127–135

[15] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl

[16] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl

[17] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl

[18] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl

[19] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[20] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | DOI | MR | Zbl

[21] V. S. Matveev, A. A. Oshemkov, “Algorithmic classification of invariant neighborhoods for points of saddle-saddle type”, Moscow Univ. Math. Bull., 54:2 (1999), 44–47 | MR | Zbl

[22] A. A. Oshemkov, “Saddle singularities of complexity 1 of integrable Hamiltonian systems”, Moscow Univ. Math. Bull., 66:2 (2011), 60–69 | DOI | MR | Zbl

[23] A. A. Oshemkov, “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math., 205 (1995), 119–127 | MR | Zbl

[24] Nguyen Tien Zung, “Decomposition of nondegenerate singularities of integrable Hamiltonian systems”, Lett. Math. Phys., 33:3 (1995), 187–193 | DOI | MR | Zbl

[25] Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl

[26] A. V. Grabezhnoi, Invarianty sloeniya Liuvillya dlya 4-mernykh osobennostei tipa sedlo-sedlo, Diplomnaya rabota, MGU im. M. V. Lomonosova, M., 2005

[27] M. A. Tuzhilin, “Invariants of four- and three-dimensional singularities of integrable systems”, Dokl. Math., 93:2 (2016), 186–189 | DOI | DOI | MR | Zbl