Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1337-1350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, first we discuss two existence and uniqueness results for a class of nonlinear fractional functional differential equations with delay involving Caputo fractional derivatives with respect to the Chebyshev and Bielecki norms. Second, we use the Picard operator to establish Ulam-Hyers-Mittag-Leffler stability results on a compact interval. Finally, two examples are provided to illustrate our results. Bibliography: 29 titles.
Keywords: fractional functional differential equation, Ulam-Hyers-Mittag-Leffler stability, Bielecki norms, Chebyshev norms.
@article{SM_2018_209_9_a3,
     author = {A. U. Kh. Niazi and J. Wei and M. Rehman and P. Denghao},
     title = {Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1337--1350},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/}
}
TY  - JOUR
AU  - A. U. Kh. Niazi
AU  - J. Wei
AU  - M. Rehman
AU  - P. Denghao
TI  - Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1337
EP  - 1350
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/
LA  - en
ID  - SM_2018_209_9_a3
ER  - 
%0 Journal Article
%A A. U. Kh. Niazi
%A J. Wei
%A M. Rehman
%A P. Denghao
%T Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
%J Sbornik. Mathematics
%D 2018
%P 1337-1350
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/
%G en
%F SM_2018_209_9_a3
A. U. Kh. Niazi; J. Wei; M. Rehman; P. Denghao. Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1337-1350. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/

[1] M. R. Abdollahpour, R. Aghayari, M. Th. Rassias, “Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions”, J. Math. Anal. Appl., 437:1 (2016), 605–612 | DOI | MR | Zbl

[2] N. Eghbali, V. Kalvandi, J. M. Rassias, “A fixed point approach to the Mittag-Leffler–Hyers–Ulam stability of a fractional integral equation”, Open Math., 14 (2016), 237–246 | DOI | MR | Zbl

[3] D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Progr. Nonlinear Differential Equations Appl., 34, Birkhäuser Boston, Inc., Boston, MA, 1998, vi+313 pp. | DOI | MR | Zbl

[4] D. H. Hyers, “On the stability of the linear functional equation”, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222–224 | DOI | MR | Zbl

[5] Y. Jalilian, R. Jalilian, “Existence of solution for delay fractional differential equations”, Mediterr. J. Math., 10:4 (2013), 1731–1747 | DOI | MR | Zbl

[6] Soon-Mo Jung, Hyers–Ulam–Rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001, ix+256 pp. | MR | Zbl

[7] S.-M. Jung, “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 17:10 (2004), 1135–1140 | DOI | MR | Zbl

[8] Soon-Mo Jung, “A fixed point approach to the stability of differential equations $y'=F (x, y)$”, Bull. Malays. Math. Sci. Soc. (2), 33:1 (2010), 47–56 | MR | Zbl

[9] Soon-Mo Jung, D. Popa, M. Th. Rassias, “On the stability of the linear functional equation in a single variable on complete metric groups”, J. Global Optim., 59:1 (2014), 165–171 | DOI | MR | Zbl

[10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Sci. B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl

[11] M. W. Michalski, Derivatives of noninteger order and their applications, Dissertationes Math. (Rozprawy Mat.), 328, Polish Acad. Sci. Inst. Math., Warszawa, 1993, 47 pp. | MR | Zbl

[12] Analytic number theory, approximation theory, and special functions, eds. G. V. Milovanović, M. Th. Rassias, Springer, New York, 2014, xii+880 pp. | DOI | MR | Zbl

[13] T. Miura, S. Miyajima, S.-E. Takahasi, “A characterization of Hyers–Ulam stability of first order linear differential operators”, J. Math. Anal. Appl, 286:1 (2003), 136–146 | DOI | MR | Zbl

[14] T. Miura, S. Miyajima, S.-E. Takahasi, “Hyers–Ulam stability of linear differential operator with constant coefficients”, Math. Nachr., 258 (2003), 90–96 | DOI | MR | Zbl

[15] M. Obłoza, “Hyers stability of the linear differential equation”, Rocznik Nauk.-Dydakt. Prace Mat., 1993, no. 13, 259–270 | MR | Zbl

[16] M. Obłoza, “Connections between Hyers and Lyapunov stability of the ordinary differential equations”, Rocznik Nauk.-Dydakt. Prace Mat., 1997, no. 14, 141–146 | MR | Zbl

[17] D. Otrocol, V. Ilea, “Ulam stability for a delay differential equation”, Cent. Eur. J. Math., 11:7 (2013), 1296–1303 | DOI | MR | Zbl

[18] T. M. Rassias, “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72:2 (1978), 297–300 | DOI | MR | Zbl

[19] I. A. Rus, “Ulam stability of ordinary differential equations”, Stud. Univ. Babeş–Bolyai Math., 54:4 (2009), 125–133 | MR | Zbl

[20] S.-E. Takahasi, T. Miura, S. Miyajima, “On the Hyers–Ulam stability of the Banach space-valued differential equation $y'=\lambda y $”, Bull. Korean Math. Soc., 39:2 (2002), 309–315 | DOI | MR | Zbl

[21] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York–London, 1960, xiii+150 pp. | MR | Zbl | Zbl

[22] JinRong Wang, LinLi Lv, Yong Zhou, “New concepts and results in stability of fractional differential equations”, Commun. Nonlinear Sci. Numer. Simul., 17:6 (2012), 2530–2538 | DOI | MR | Zbl

[23] JinRong Wang, Yong Zhou, “Mittag-Leffler–Ulam stabilities of fractional evolution equations”, Appl. Math. Lett., 25:4 (2012), 723–728 | DOI | MR | Zbl

[24] JinRong Wang, Yong Zhou, M. Fečkan, “Nonlinear impulsive problems for fractional differential equations and Ulam stability”, Comput. Math. Appl., 64:10 (2012), 3389–3405 | DOI | MR | Zbl

[25] JinRong Wang, M. Fečkan, Yong Zhou, “Ulam's type stability of impulsive ordinary differential equations”, J. Math. Anal. Appl., 395:1 (2012), 258–264 | DOI | MR | Zbl

[26] JinRong Wang, Xuezhu Li, “$E_{\alpha}$-Ulam type stability of fractional order ordinary differential equations”, J. Appl. Math. Comput., 45:1-2 (2014), 449–459 | DOI | MR | Zbl

[27] JinRong Wang, Linli Lv, Yong Zhou, “Ulam stability and data dependence for fractional differential equations with Caputo derivative”, Electron. J. Qual. Theory Differ. Equ., 2011, 63, 10 pp. | MR | Zbl

[28] JinRong Wang, Yuruo Zhang, “Ulam–Hyers–Mittag-Leffler stability of fractional-order delay differential equations”, Optimization, 63:8 (2014), 1181–1190 | DOI | MR | Zbl

[29] Wei Wei, Xuezhu Li, Xia Li, “New stability results for fractional integral equation”, Comput. Math. Appl., 64:10 (2012), 3468–3476 | DOI | MR | Zbl