Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1337-1350
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, first we discuss two existence and uniqueness results for a class of nonlinear fractional functional differential equations with delay involving Caputo fractional derivatives with respect to the Chebyshev and Bielecki norms. Second, we use the Picard operator to establish Ulam-Hyers-Mittag-Leffler stability results on a compact interval. Finally, two examples are provided to illustrate our results.
Bibliography: 29 titles.
Keywords:
fractional functional differential equation, Ulam-Hyers-Mittag-Leffler stability, Bielecki norms, Chebyshev norms.
@article{SM_2018_209_9_a3,
author = {A. U. Kh. Niazi and J. Wei and M. Rehman and P. Denghao},
title = {Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations},
journal = {Sbornik. Mathematics},
pages = {1337--1350},
publisher = {mathdoc},
volume = {209},
number = {9},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/}
}
TY - JOUR AU - A. U. Kh. Niazi AU - J. Wei AU - M. Rehman AU - P. Denghao TI - Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations JO - Sbornik. Mathematics PY - 2018 SP - 1337 EP - 1350 VL - 209 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/ LA - en ID - SM_2018_209_9_a3 ER -
%0 Journal Article %A A. U. Kh. Niazi %A J. Wei %A M. Rehman %A P. Denghao %T Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations %J Sbornik. Mathematics %D 2018 %P 1337-1350 %V 209 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/ %G en %F SM_2018_209_9_a3
A. U. Kh. Niazi; J. Wei; M. Rehman; P. Denghao. Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1337-1350. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/