Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1337-1350

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, first we discuss two existence and uniqueness results for a class of nonlinear fractional functional differential equations with delay involving Caputo fractional derivatives with respect to the Chebyshev and Bielecki norms. Second, we use the Picard operator to establish Ulam-Hyers-Mittag-Leffler stability results on a compact interval. Finally, two examples are provided to illustrate our results. Bibliography: 29 titles.
Keywords: fractional functional differential equation, Ulam-Hyers-Mittag-Leffler stability, Bielecki norms, Chebyshev norms.
@article{SM_2018_209_9_a3,
     author = {A. U. Kh. Niazi and J. Wei and M. Rehman and P. Denghao},
     title = {Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1337--1350},
     publisher = {mathdoc},
     volume = {209},
     number = {9},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/}
}
TY  - JOUR
AU  - A. U. Kh. Niazi
AU  - J. Wei
AU  - M. Rehman
AU  - P. Denghao
TI  - Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1337
EP  - 1350
VL  - 209
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/
LA  - en
ID  - SM_2018_209_9_a3
ER  - 
%0 Journal Article
%A A. U. Kh. Niazi
%A J. Wei
%A M. Rehman
%A P. Denghao
%T Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations
%J Sbornik. Mathematics
%D 2018
%P 1337-1350
%V 209
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/
%G en
%F SM_2018_209_9_a3
A. U. Kh. Niazi; J. Wei; M. Rehman; P. Denghao. Ulam-Hyers-Mittag-Leffler stability for nonlinear fractional neutral differential equations. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1337-1350. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a3/