The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1287-1336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

After scaling, a long Kirchhoff plate with rigidly clamped ends and free lateral sides is described by a mixed boundary-value problem for the biharmonic operator in a thin domain with weakly curved boundary. Based on a general procedure for constructing asymptotic formulae for solutions of elliptic problems in thin domains, asymptotic expansions are derived for the eigenvalues and eigenfunctions of this problem with respect to a small parameter equal to the relative width of the plate and are also justified. In the low-frequency range of the spectrum the limiting problem is a Dirichlet problem for a fourth-order ordinary differential equation with variable coefficients, and in the mid-frequency range it is (quite unexpectedly) a Dirichlet problem for a second-order equation. The phenomenon of a boundary layer in a neighbourhood of the ends of the plate is investigated. This makes it possible to construct infinite formal asymptotic series for simple eigenvalues and the corresponding eigenfunctions, and to develop a model with enhanced precision. Asymptotic constructions for plates with periodic rapidly oscillating boundaries or for other sets of boundary conditions corresponding to mechanically reasonable ways to fix the ends of the plate are discussed. Bibliography: 46 titles.
Keywords: Kirchhoff plate, eigenvalues and eigenfunctions, asymptotic behaviour, dimension reduction, boundary layer, one-dimensional model.
@article{SM_2018_209_9_a2,
     author = {S. A. Nazarov},
     title = {The asymptotics of natural oscillations of a~long two-dimensional {Kirchhoff} plate with variable cross-section},
     journal = {Sbornik. Mathematics},
     pages = {1287--1336},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1287
EP  - 1336
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/
LA  - en
ID  - SM_2018_209_9_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section
%J Sbornik. Mathematics
%D 2018
%P 1287-1336
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/
%G en
%F SM_2018_209_9_a2
S. A. Nazarov. The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1287-1336. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/

[1] S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | MR | Zbl | Zbl

[2] D. Morgenstern, “Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie”, Arch. Rational Mech. Anal., 4 (1959), 145–152 | DOI | MR | Zbl

[3] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 867–877 | DOI | MR | Zbl

[4] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp. | MR | Zbl

[5] J. Sanchez-Hubert, É. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Rech. Math. Appl., Masson, Paris, 1997, xix+376 pp. | Zbl

[6] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 406 pp.

[7] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl

[8] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl

[9] H. Le Dret, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, Rech. Math. Appl., 19, Masson, Paris, 1991, x+198 pp. | MR | Zbl

[10] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | DOI | MR | Zbl

[11] S. A. Nazarov, “A general scheme for averaging selfadjoint elliptic systems in multidimensional domains, including thin domains”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl

[12] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[13] S. A. Nazarov, “Non-self-adjoint elliptic problems with a polynomial property in domains possessing cylindrical outlets to infinity”, J. Math. Sci. (N. Y.), 101:5 (2000), 3512–3522 | DOI | MR | Zbl

[14] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (N. Y.), 92:6 (1998), 4338–4353 | DOI | MR | Zbl

[15] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl

[16] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci. (N. Y.), 97:4 (1999), 4245–4279 | DOI | MR | Zbl

[17] S. A. Nazarov, A. S. Slutskii, “One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification”, Izv. Math., 64:3 (2000), 531–562 | DOI | DOI | MR | Zbl

[18] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl

[19] M. Dauge, I. Gruais, A. Rössle, “The influence of lateral boundary conditions on the asymptotics in thin elastic plates”, SIAM J. Math. Anal., 31:2 (1999), 305–345 | DOI | MR | Zbl

[20] S. A. Nazarov, “Boundary layers and boundary hinge-support conditions for thin plates”, J. Math. Sci. (N. Y.), 108:5 (2002), 806–850 | DOI | MR | Zbl

[21] M. Dauge, I. Djurdjevic, E. Faou, A. Rössle, “Eigenmode asymptotics in thin elastic plates”, J. Math. Pures Appl. (9), 78:9 (1999), 925–964 | DOI | MR | Zbl

[22] S. A. Nazarov, “On the asymptotics of the spectrum of a thin plate problem of elasticity”, Siberian Math. J., 41:4 (2000), 744–759 | DOI | MR | Zbl

[23] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU. Ser. 1. Matem., mekh., astronom., 1982, no. 7, 65–68 | MR | Zbl

[24] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiii+435 pp., xxiii+323 pp. | MR | MR | Zbl

[25] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl

[26] M. I. Višik, L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. (2), 20 (1962), 239–364 | MR | MR | Zbl | Zbl

[27] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl

[28] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[29] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[30] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl

[31] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl

[32] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl

[33] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Steklov Inst. Math., 171 (1987), 1–121 | MR | Zbl

[34] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[35] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[36] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl

[37] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[38] S. A. Nazarov, “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C. R. Méchanique, 330:9 (2002), 603–607 | DOI

[39] S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillations of a piezoelectric plate”, J. Math. Sci. (N. Y.), 114:5 (2003), 1657–1725 | DOI | MR | Zbl

[40] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70:3 (2005), 419–458 | DOI | MR | Zbl

[41] S. A. Nazarov, “Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems”, Funct. Anal. Appl., 49:1 (2015), 25–39 | DOI | DOI | MR | Zbl

[42] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure”, Commun. Contemp. Math., 18:5 (2016), 1550057, 27 pp. | DOI | MR | Zbl

[43] I. V. Kamotskii, S. A. Nazarov, “On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain”, J. Math. Sci. (N. Y.), 101:2 (2000), 2941–2974 | DOI | MR | Zbl

[44] L. Friedlander, M. Solomyak, “On the spectrum of the DirichletLaplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl

[45] D. Borisov, P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in ${\mathbb R}^d$”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR | Zbl

[46] S. A. Nazarov, E. Pérez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Trans. Amer. Math. Soc., 368:7 (2016), 4787–4829 | DOI | MR | Zbl