@article{SM_2018_209_9_a2,
author = {S. A. Nazarov},
title = {The asymptotics of natural oscillations of a~long two-dimensional {Kirchhoff} plate with variable cross-section},
journal = {Sbornik. Mathematics},
pages = {1287--1336},
year = {2018},
volume = {209},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/}
}
TY - JOUR AU - S. A. Nazarov TI - The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section JO - Sbornik. Mathematics PY - 2018 SP - 1287 EP - 1336 VL - 209 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/ LA - en ID - SM_2018_209_9_a2 ER -
S. A. Nazarov. The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1287-1336. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a2/
[1] S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | MR | Zbl | Zbl
[2] D. Morgenstern, “Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie”, Arch. Rational Mech. Anal., 4 (1959), 145–152 | DOI | MR | Zbl
[3] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 867–877 | DOI | MR | Zbl
[4] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp. | MR | Zbl
[5] J. Sanchez-Hubert, É. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Rech. Math. Appl., Masson, Paris, 1997, xix+376 pp. | Zbl
[6] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 406 pp.
[7] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl
[8] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl
[9] H. Le Dret, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, Rech. Math. Appl., 19, Masson, Paris, 1991, x+198 pp. | MR | Zbl
[10] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | DOI | MR | Zbl
[11] S. A. Nazarov, “A general scheme for averaging selfadjoint elliptic systems in multidimensional domains, including thin domains”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl
[12] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl
[13] S. A. Nazarov, “Non-self-adjoint elliptic problems with a polynomial property in domains possessing cylindrical outlets to infinity”, J. Math. Sci. (N. Y.), 101:5 (2000), 3512–3522 | DOI | MR | Zbl
[14] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (N. Y.), 92:6 (1998), 4338–4353 | DOI | MR | Zbl
[15] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl
[16] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci. (N. Y.), 97:4 (1999), 4245–4279 | DOI | MR | Zbl
[17] S. A. Nazarov, A. S. Slutskii, “One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification”, Izv. Math., 64:3 (2000), 531–562 | DOI | DOI | MR | Zbl
[18] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl
[19] M. Dauge, I. Gruais, A. Rössle, “The influence of lateral boundary conditions on the asymptotics in thin elastic plates”, SIAM J. Math. Anal., 31:2 (1999), 305–345 | DOI | MR | Zbl
[20] S. A. Nazarov, “Boundary layers and boundary hinge-support conditions for thin plates”, J. Math. Sci. (N. Y.), 108:5 (2002), 806–850 | DOI | MR | Zbl
[21] M. Dauge, I. Djurdjevic, E. Faou, A. Rössle, “Eigenmode asymptotics in thin elastic plates”, J. Math. Pures Appl. (9), 78:9 (1999), 925–964 | DOI | MR | Zbl
[22] S. A. Nazarov, “On the asymptotics of the spectrum of a thin plate problem of elasticity”, Siberian Math. J., 41:4 (2000), 744–759 | DOI | MR | Zbl
[23] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestn. LGU. Ser. 1. Matem., mekh., astronom., 1982, no. 7, 65–68 | MR | Zbl
[24] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiii+435 pp., xxiii+323 pp. | MR | MR | Zbl
[25] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl
[26] M. I. Višik, L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. (2), 20 (1962), 239–364 | MR | MR | Zbl | Zbl
[27] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl
[28] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl
[29] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[30] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl
[31] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Math. USSR-Izv., 18:1 (1982), 89–98 | DOI | MR | Zbl
[32] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl
[33] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Steklov Inst. Math., 171 (1987), 1–121 | MR | Zbl
[34] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl
[35] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[36] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl
[37] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[38] S. A. Nazarov, “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C. R. Méchanique, 330:9 (2002), 603–607 | DOI
[39] S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillations of a piezoelectric plate”, J. Math. Sci. (N. Y.), 114:5 (2003), 1657–1725 | DOI | MR | Zbl
[40] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70:3 (2005), 419–458 | DOI | MR | Zbl
[41] S. A. Nazarov, “Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems”, Funct. Anal. Appl., 49:1 (2015), 25–39 | DOI | DOI | MR | Zbl
[42] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure”, Commun. Contemp. Math., 18:5 (2016), 1550057, 27 pp. | DOI | MR | Zbl
[43] I. V. Kamotskii, S. A. Nazarov, “On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain”, J. Math. Sci. (N. Y.), 101:2 (2000), 2941–2974 | DOI | MR | Zbl
[44] L. Friedlander, M. Solomyak, “On the spectrum of the DirichletLaplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl
[45] D. Borisov, P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in ${\mathbb R}^d$”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR | Zbl
[46] S. A. Nazarov, E. Pérez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Trans. Amer. Math. Soc., 368:7 (2016), 4787–4829 | DOI | MR | Zbl