Tropical limit of log-inflection points for planar curves
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the behaviour of log-inflection points (that is, points of inflection with respect to the parallelization of $(\mathbb{C} ^\times)^2$ given by the multiplicative group law) of curves in $(\mathbb{C}^\times)^2$ under passage to the tropical limit. Assuming that the limiting tropical curve is smooth, we show that log-inflection points accumulate by pairs at the midpoints of bounded edges of it. Bibliography: 11 titles.
Keywords: logarithmic inflection points, tropical limit.
@article{SM_2018_209_9_a1,
     author = {G. B. Mikhalkin and A. Renaudineau},
     title = {Tropical limit of log-inflection points for planar curves},
     journal = {Sbornik. Mathematics},
     pages = {1273--1286},
     publisher = {mathdoc},
     volume = {209},
     number = {9},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/}
}
TY  - JOUR
AU  - G. B. Mikhalkin
AU  - A. Renaudineau
TI  - Tropical limit of log-inflection points for planar curves
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1273
EP  - 1286
VL  - 209
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/
LA  - en
ID  - SM_2018_209_9_a1
ER  - 
%0 Journal Article
%A G. B. Mikhalkin
%A A. Renaudineau
%T Tropical limit of log-inflection points for planar curves
%J Sbornik. Mathematics
%D 2018
%P 1273-1286
%V 209
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/
%G en
%F SM_2018_209_9_a1
G. B. Mikhalkin; A. Renaudineau. Tropical limit of log-inflection points for planar curves. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/