Tropical limit of log-inflection points for planar curves
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes the behaviour of log-inflection points (that is, points of inflection with respect to the parallelization of $(\mathbb{C} ^\times)^2$ given by the multiplicative group law) of curves in $(\mathbb{C}^\times)^2$ under passage to the tropical limit. Assuming that the limiting tropical curve is smooth, we show that log-inflection points accumulate by pairs at the midpoints of bounded edges of it. Bibliography: 11 titles.
Keywords: logarithmic inflection points, tropical limit.
@article{SM_2018_209_9_a1,
     author = {G. B. Mikhalkin and A. Renaudineau},
     title = {Tropical limit of log-inflection points for planar curves},
     journal = {Sbornik. Mathematics},
     pages = {1273--1286},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/}
}
TY  - JOUR
AU  - G. B. Mikhalkin
AU  - A. Renaudineau
TI  - Tropical limit of log-inflection points for planar curves
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1273
EP  - 1286
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/
LA  - en
ID  - SM_2018_209_9_a1
ER  - 
%0 Journal Article
%A G. B. Mikhalkin
%A A. Renaudineau
%T Tropical limit of log-inflection points for planar curves
%J Sbornik. Mathematics
%D 2018
%P 1273-1286
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/
%G en
%F SM_2018_209_9_a1
G. B. Mikhalkin; A. Renaudineau. Tropical limit of log-inflection points for planar curves. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/

[1] E. Brugallé, I. Itenberg, G. Mikhalkin, K. Shaw, “Brief introduction to tropical geometry”, Proceedings of the Gökova Geometry–Topology conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, 1–75 pp. | MR | Zbl

[2] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl

[3] I. Itenberg, L. Katzarkov, G. Mikhalkin, I. Zharkov, Tropical homology, arXiv: 1604.01838

[4] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp. | DOI | MR | Zbl

[5] M. M. Kapranov, “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:2 (1991), 277–285 | DOI | MR | Zbl

[6] A. G. Kushnirenko, “Newton polytopes and the Bezout theorem”, Funct. Anal. Appl., 10:3 (1976), 233–235 | DOI | MR | Zbl

[7] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl

[8] G. Mikhalkin, “Decomposition into pairs-of-pants for complex algebraic hypersurfaces”, Topology, 43:5 (2004), 1035–1065 | DOI | MR | Zbl

[9] G. Mikhalkin, “Enumerative tropical algebraic geometry in {$\mathbb{R}^2$}”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl

[10] G. Mikhalkin, “Tropical geometry and its applications”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 827–852 | MR | Zbl

[11] O. Viro, “Dequantization of real algebraic geometry on logarithmic paper”, European congress of mathematics (Barcelona, 2000), v. I, Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 pp. | MR | Zbl