Tropical limit of log-inflection points for planar curves
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper describes the behaviour of log-inflection points (that is, points of inflection with respect to the parallelization of $(\mathbb{C} ^\times)^2$ given by the multiplicative group law) of curves in $(\mathbb{C}^\times)^2$ under passage to the tropical limit. Assuming that the limiting tropical curve is smooth, we show that log-inflection points accumulate by pairs at the midpoints of bounded edges of it.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
logarithmic inflection points, tropical limit.
                    
                    
                    
                  
                
                
                @article{SM_2018_209_9_a1,
     author = {G. B. Mikhalkin and A. Renaudineau},
     title = {Tropical limit of log-inflection points for planar curves},
     journal = {Sbornik. Mathematics},
     pages = {1273--1286},
     publisher = {mathdoc},
     volume = {209},
     number = {9},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/}
}
                      
                      
                    G. B. Mikhalkin; A. Renaudineau. Tropical limit of log-inflection points for planar curves. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/
