@article{SM_2018_209_9_a1,
author = {G. B. Mikhalkin and A. Renaudineau},
title = {Tropical limit of log-inflection points for planar curves},
journal = {Sbornik. Mathematics},
pages = {1273--1286},
year = {2018},
volume = {209},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/}
}
G. B. Mikhalkin; A. Renaudineau. Tropical limit of log-inflection points for planar curves. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1273-1286. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a1/
[1] E. Brugallé, I. Itenberg, G. Mikhalkin, K. Shaw, “Brief introduction to tropical geometry”, Proceedings of the Gökova Geometry–Topology conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, 1–75 pp. | MR | Zbl
[2] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl
[3] I. Itenberg, L. Katzarkov, G. Mikhalkin, I. Zharkov, Tropical homology, arXiv: 1604.01838
[4] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp. | DOI | MR | Zbl
[5] M. M. Kapranov, “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:2 (1991), 277–285 | DOI | MR | Zbl
[6] A. G. Kushnirenko, “Newton polytopes and the Bezout theorem”, Funct. Anal. Appl., 10:3 (1976), 233–235 | DOI | MR | Zbl
[7] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl
[8] G. Mikhalkin, “Decomposition into pairs-of-pants for complex algebraic hypersurfaces”, Topology, 43:5 (2004), 1035–1065 | DOI | MR | Zbl
[9] G. Mikhalkin, “Enumerative tropical algebraic geometry in {$\mathbb{R}^2$}”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl
[10] G. Mikhalkin, “Tropical geometry and its applications”, International congress of mathematicians, v. II, Eur. Math. Soc., Zürich, 2006, 827–852 | MR | Zbl
[11] O. Viro, “Dequantization of real algebraic geometry on logarithmic paper”, European congress of mathematics (Barcelona, 2000), v. I, Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 pp. | MR | Zbl