New examples of Besicovitch transitive cylindrical cascades
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1257-1272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New examples of transitive cylindrical cascades with discrete orbits (the Besicovitch property) are constructed. For each $\gamma\in(0,1)$ there exists a cylindrical cascade over a rotation of the circle, with a $\gamma$-Hölder continuous function, that has the Besicovitch property; furthermore, the Hausdorff dimension of the set of points on the circle which have discrete orbits is at least $1-\gamma$. This improves (by $\varepsilon$) an earlier estimate. In addition, an example of a cascade with discrete orbits such that the corresponding function satisfies the Hölder condition with each exponent $\gamma\in(0,1)$ is constructed. Bibliography: 16 titles.
Keywords: transitive cylindrical cascade, discrete orbit
Mots-clés : Hausdorff dimension.
@article{SM_2018_209_9_a0,
     author = {A. V. Kochergin},
     title = {New examples of {Besicovitch} transitive cylindrical cascades},
     journal = {Sbornik. Mathematics},
     pages = {1257--1272},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a0/}
}
TY  - JOUR
AU  - A. V. Kochergin
TI  - New examples of Besicovitch transitive cylindrical cascades
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1257
EP  - 1272
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a0/
LA  - en
ID  - SM_2018_209_9_a0
ER  - 
%0 Journal Article
%A A. V. Kochergin
%T New examples of Besicovitch transitive cylindrical cascades
%J Sbornik. Mathematics
%D 2018
%P 1257-1272
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a0/
%G en
%F SM_2018_209_9_a0
A. V. Kochergin. New examples of Besicovitch transitive cylindrical cascades. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1257-1272. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a0/

[1] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Math. USSR-Izv., 7:6 (1973), 1257–1271 | DOI | MR | Zbl

[2] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947, 392 pp.; H. Poincaré, “Sur les courbes définies par les équations différentielles”, C. R. Acad. Sci. Paris, XCIII, XCVIII (1882, 1884), 951–952, 287–289 ; J. Math. Pures Appl. (4), I, II (1885, 1886), 167–244, 151–211 | Zbl | Zbl

[3] L. G. Shnirelman, “Primer odnogo preobrazovaniya ploskosti”, Izv. Donskogo politekh. in-ta, 14 (1930), 64–74

[4] A. S. Besicovitch, “A problem on topological transformation of the plane”, Fund. Math., 28 (1937), 61–65 | Zbl

[5] W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp. | MR | Zbl

[6] A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47:1 (1951), 38–45 | DOI | MR | Zbl

[7] E. A. Sidorov, “Topological transitivity of cylindrical cascades”, Math. Notes, 14:3 (1973), 810–816 | DOI | MR | Zbl

[8] D. Coronel, A. Navas, M. Ponce, “On the dynamics of nonreducible cylindrical vortices”, J. London Math. Soc. (2), 85:3 (2012), 789–808 ; arXiv: 1101.3526v2 | DOI | MR | Zbl

[9] L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178 | DOI | DOI | MR | Zbl

[10] K. Fra̧czek, M. Lemańczyk, “On the Hausdorff dimension of the set of closed orbits for a cylindrical transformation”, Nonlinearity, 23:10 (2010), 2393–2422 | DOI | MR | Zbl

[11] E. Dymek, Transitive cylinder flows whose set of discrete points is of full Hausdorff dimension, arXiv: 1303.3099v1

[12] A. Kochergin, “A Besikovitch cylindrical transformation with Hölder function”, Electron. Res. Announc. Math. Sci., 22 (2015), 87–91 | DOI | MR | Zbl

[13] A. V. Kochergin, “Besicovitch cylindrical transformation with a Hölder function”, Math. Notes, 99:3 (2016), 382–389 | DOI | DOI | MR | Zbl

[14] A. V. Kochergin, “A mixing special flow over a circle rotation with almost Lipschitz function”, Sb. Math., 193:3 (2002), 359–385 | DOI | DOI | MR | Zbl

[15] A. Ya. Khinchin, Continued fractions, The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | MR | Zbl | Zbl

[16] K. Falconer, Fractal geometry. Mathematical foundations and applications, 2nd ed., John Wiley Sons, Inc., Hoboken, NJ, 2003, xxviii+337 pp. | DOI | MR | Zbl