A~canonical basis of two-cycles on a~$K3$ surface
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1248-1256
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct a basis of two-cycles on a $K3$ surface; in this basis, the intersection form takes the canonical form $2E_8(-1) \oplus 3H$. Elements of the basis are realized by formal sums of smooth submanifolds.
Bibliography: 8 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$K3$ surface, intersection form.
                    
                    
                    
                  
                
                
                @article{SM_2018_209_8_a6,
     author = {I. A. Taimanov},
     title = {A~canonical basis of two-cycles on a~$K3$ surface},
     journal = {Sbornik. Mathematics},
     pages = {1248--1256},
     publisher = {mathdoc},
     volume = {209},
     number = {8},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a6/}
}
                      
                      
                    I. A. Taimanov. A~canonical basis of two-cycles on a~$K3$ surface. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1248-1256. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a6/
