A~canonical basis of two-cycles on a~$K3$ surface
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1248-1256

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a basis of two-cycles on a $K3$ surface; in this basis, the intersection form takes the canonical form $2E_8(-1) \oplus 3H$. Elements of the basis are realized by formal sums of smooth submanifolds. Bibliography: 8 titles.
Keywords: $K3$ surface, intersection form.
@article{SM_2018_209_8_a6,
     author = {I. A. Taimanov},
     title = {A~canonical basis of two-cycles on a~$K3$ surface},
     journal = {Sbornik. Mathematics},
     pages = {1248--1256},
     publisher = {mathdoc},
     volume = {209},
     number = {8},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a6/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - A~canonical basis of two-cycles on a~$K3$ surface
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1248
EP  - 1256
VL  - 209
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a6/
LA  - en
ID  - SM_2018_209_8_a6
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T A~canonical basis of two-cycles on a~$K3$ surface
%J Sbornik. Mathematics
%D 2018
%P 1248-1256
%V 209
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a6/
%G en
%F SM_2018_209_8_a6
I. A. Taimanov. A~canonical basis of two-cycles on a~$K3$ surface. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1248-1256. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a6/