The class $R$ and finely analytic functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1234-1247
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is concerned with the class ${R}$ of holomorphic functions introduced by Gonchar, and the class $R^0$, which is a special case of the former. A holomorphic function $f$ in a neighbourhood of $0\in\mathbb{C}$ belongs to ${R}^0$, ${f}\in {R^0}$ if it admits rapid rational approximation in some closed ball $\overline{B}(0, r)$, $r > 0$. It is proved that in certain cases functions in the class $R$ are finely analytic in the whole of $\mathbb{C}$.
Bibliography: 26 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Gonchar class, fine topology, finely analytic function, rational approximation, Hankel determinant.
                    
                    
                    
                  
                
                
                @article{SM_2018_209_8_a5,
     author = {A. Sadullaev and Z. Ibragimov},
     title = {The class $R$ and finely analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1234--1247},
     publisher = {mathdoc},
     volume = {209},
     number = {8},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a5/}
}
                      
                      
                    A. Sadullaev; Z. Ibragimov. The class $R$ and finely analytic functions. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1234-1247. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a5/
