@article{SM_2018_209_8_a5,
author = {A. Sadullaev and Z. Ibragimov},
title = {The class $R$ and finely analytic functions},
journal = {Sbornik. Mathematics},
pages = {1234--1247},
year = {2018},
volume = {209},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a5/}
}
A. Sadullaev; Z. Ibragimov. The class $R$ and finely analytic functions. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1234-1247. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a5/
[1] M. Brelot, Éléments de la théorie classique du potentiel, 2ème éd., Centre de Documetation Universitaire, Paris, 1961, 191 pp. | MR | MR | Zbl | Zbl
[2] E. M. Chirka, “Removable singularities of holomorphic functions”, Sb. Math., 207:9 (2016), 1335–1343 | DOI | DOI | MR | Zbl
[3] E. M. Chirka, “On removable singularities of complex analytic sets”, Sb. Math., 208:7 (2017), 1073–1086 | DOI | DOI | MR | Zbl
[4] A. Edigarian, J. Wiegerinck, “The pluripolar hull of the graph of a holomorphic function with polar singularities”, Indiana Univ. Math. J., 52:6 (2003), 1663–1680 | DOI | MR | Zbl
[5] A. Edigarian, J. Wiegerinck, “Graphs that are not complete pluripolar”, Proc. Amer. Math. Soc., 131:8 (2003), 2459–2465 | DOI | MR | Zbl
[6] A. Edigarian, J. Wiegerinck, “Determination of the pluripolar hull of graphs of certain holomorphic functions”, Ann. Inst. Fourier (Genoble), 54:6 (2004), 2085–2104 | DOI | MR | Zbl
[7] T. Edlund, “Complete pluripolar curves and graphs”, Ann. Polon. Math., 84:1 (2004), 75–86 | DOI | MR | Zbl
[8] T. Edlund, B. Jöricke, “The pluripolar hull of a graph and fine analytic continuation”, Ark. Mat., 44:1 (2006), 39–60 | DOI | MR | Zbl
[9] B. Fuglede, “Finely holomorphic functions. A survey”, Rev. Roumaine Math. Pures Appl., 33:4 (1988), 283–295 | MR | Zbl
[10] A. A. Gončar, “A local condition of single-valuedness of analytic functions”, Math. USSR-Sb., 18:1 (1972), 151–167 | DOI | MR | Zbl
[11] A. A. Gončar, “On the convergence of Padé approximants”, Math. USSR-Sb., 21:1 (1973), 155–166 | DOI | MR | Zbl
[12] A. A. Gončar, “A local condition for the single-valuedness of analytic functions of several variables”, Math. USSR-Sb., 22:2 (1974), 305–322 | DOI | MR | Zbl
[13] S. A. Imomkulov, “On holomorphic continuation of functions defined on a pencil of boundary complex lines”, Izv. Math., 69:2 (2005), 345–363 | DOI | DOI | MR | Zbl
[14] S. A. Imomkulov, “Analiticheskoe prodolzhenie separatno-analiticheskikh funktsii”, Vestn. KrasGU. Ser. fiz.-matem. nauk, 7 (2006), 75–84
[15] M. V. Kazaryan, “O golomorfnom prodolzhenii funktsii so spetsialnymi osobennostyami v $\mathbb{C}^{n} $”, Dokl. AN ArmSSR, 76:1 (1983), 13–17 | MR | Zbl
[16] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl
[17] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | MR | Zbl | Zbl
[18] N. Levenberg, G. Martin, E. A. Poletsky, “Analytic disks and pluripolar sets”, Indiana Univ. Math. J., 41:2 (1992), 515–532 | DOI | MR | Zbl
[19] N. Levenberg, E. A. Poletsky, “Pluripolar hulls”, Michigan Math. J., 46:1 (1999), 151–162 | DOI | MR | Zbl
[20] A. S. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, Russian Math. Surveys, 36:4 (1981), 61–119 | DOI | MR | Zbl
[21] A. S. Sadullaev, “Rational approximation and pluripolar sets”, Math. USSR-Sb., 47:1 (1984), 91–113 | DOI | MR | Zbl
[22] A. S. Sadullaev, “A criterion for rapid rational approximation in $\mathbf C^n$”, Math. USSR-Sb., 53:1 (1986), 271–281 | DOI | MR | Zbl
[23] A. Sadullaev, “Plurisubharmonic functions”, Several complex variables. II. Function theory in classical domains. Complex potential theory, Encyclopaedia Math. Sci., 8, Springer, Berlin, 1994, 59–106 | MR | Zbl
[24] A. Sadullaev, Teoriya plyuripotentsiala. Primeneniya, Palmarium Akademic Publishing, Germany, 2012, 316 pp.
[25] A. S. Sadullaev, E. M. Chirka, “On continuation of functions with polar singularities”, Math. USSR-Sb., 60:2 (1988), 377–384 | DOI | MR | Zbl
[26] A. S. Sadullaev, S. A. Imomkulov, “Extension of holomorphic and pluriharmonic functions with thin singularities on parallel sections”, Proc. Steklov Inst. Math., 253 (2006), 144–159 | DOI | MR | Zbl