The spectrum of the averaging of a function over pseudotrajectories of a dynamical system
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1211-1233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the discrete dynamical system generated by a homeomorphism $f$ on a compact manifold $M$ and with a continuous function $\varphi$. The averaging of $\varphi$ over a periodic $\varepsilon$-trajectory is the arithmetic mean of the values of $\varphi$ on the period. The limit set as $\varepsilon \to 0$ of the averagings over periodic $\varepsilon$-trajectories is called the spectrum of the averaging. The spectrum is shown to consist of closed intervals, where each interval is generated by a component of the chain recurrent set and can be obtained by averaging the function $\varphi$ over all invariant measures concentrated on this component. Bibliography: 18 titles.
Keywords: pseudotrajectory, chain recurrent component, symbolic image, invariant measure, flow on graph.
@article{SM_2018_209_8_a4,
     author = {G. S. Osipenko},
     title = {The spectrum of the averaging of a~function over pseudotrajectories of a~dynamical system},
     journal = {Sbornik. Mathematics},
     pages = {1211--1233},
     year = {2018},
     volume = {209},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a4/}
}
TY  - JOUR
AU  - G. S. Osipenko
TI  - The spectrum of the averaging of a function over pseudotrajectories of a dynamical system
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1211
EP  - 1233
VL  - 209
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a4/
LA  - en
ID  - SM_2018_209_8_a4
ER  - 
%0 Journal Article
%A G. S. Osipenko
%T The spectrum of the averaging of a function over pseudotrajectories of a dynamical system
%J Sbornik. Mathematics
%D 2018
%P 1211-1233
%V 209
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a4/
%G en
%F SM_2018_209_8_a4
G. S. Osipenko. The spectrum of the averaging of a function over pseudotrajectories of a dynamical system. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1211-1233. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a4/

[1] M. Shub, Stabilité globale de systèmes denamiques, Astérisque, 56, Soc. Math. France, Paris, 1978, iv+211 pp. | MR | Zbl

[2] F. Colonius, W. Kliemann, The dynamics of control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2000, xii+629 pp. | DOI | MR | Zbl

[3] G. Osipenko, “Symbolic image, hyperbolicity, and structural stability”, J. Dynam. Differential Equations, 15:2-3 (2003), 427–450 | DOI | MR | Zbl

[4] G. Osipenko, Dynamical systems, graphs, and algorithms, Lecture Notes in Math., 1889, Springer-Verlag, Berlin, 2007, xii+283 pp. | DOI | MR | Zbl

[5] G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, E. I. Petrenko, “Computation of the Morse spectrum”, J. Math. Sci. (N. Y.), 120:2 (2004), 1155–1166 | DOI | MR | Zbl

[6] R. Bowen, Symbolic dynamics, Amer. Math. Soc., Providence, RI, 1982

[7] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press, Cambridge, 1995, xvi+495 pp. | DOI | MR | Zbl

[8] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995, xii+468 pp. | MR | Zbl

[9] C. S. Hsu, Cell-to-cell mapping. A method of global analysis for nonlinear systems, Appl. Math. Sci., 64, Springer-Verlag, New York, 1987, xii+352 pp. | DOI | MR | Zbl

[10] G. S. Osipenko, “O simvolicheskom obraze dinamicheskoi sistemy”, Kraevye zadachi, Permskii politekh. in-t, Perm, 1983, 101–105 | Zbl

[11] G. D. Birkhoff, “Proof of a recurrence theorem for strongly transitive systems”, Proc. Nat. Acad. Sci., 17:12 (1931), 650–655 ; “Proof of the ergodic theorem”, 655–660 | DOI | Zbl | DOI | Zbl

[12] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl

[13] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[14] G. Osipenko, “Spectrum of a dynamical system and applied symbolic dynamics”, J. Math. Anal. Appl., 252:2 (2000), 587–616 | DOI | MR | Zbl

[15] G. S. Osipenko, “Lyapunov exponents and invariant measures on a projective bundle”, Math. Notes, 101:4 (2017), 666–676 | DOI | DOI | MR | Zbl

[16] G. Osipenko, “Localization of the chain recurrent set by symbolic dynamics methods”, Proceedings of dynamic systems and applications (Atlanta, GA, 1993), v. 1, Dynamic, Atlanta, GA, 1994, 277–282 | MR | Zbl

[17] G. Osipenko, “Symbolic images and invariant measures of dynamical systems”, Ergodic Theory and Dynamical Systems, 30:4 (2010), 1217–1237 | DOI | MR | Zbl

[18] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl