Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1164-1210
Voir la notice de l'article provenant de la source Math-Net.Ru
The infinitesimal properties of multidimensional Bol three-webs with covariantly constant curvature tensor (webs $B_m^{\triangledown}$) are considered, and a foundation for classifying such webs in accordance with the rank of the torsion tensor is laid. For a three-web $B_m^{\triangledown}$ of rank $\rho$ Cartan's method is used to construct an adapted frame and find the corresponding system of (differential) structure equations. A three-web $B_m^{\triangledown}$ of rank $\rho$ is shown to have a normal subweb that is a group web; the corresponding factor web is a regular three-web. By integrating the structure equations new families of examples of multidimensional three-webs of special form and smooth Bol loops are discovered which are generalizations of a semidirect product of two Abelian Lie groups.
Bibliography: 40 titles.
Keywords:
multidimensional three-web, Bol three-web, elastic three-web, $G$-web, smooth Bol loop.
@article{SM_2018_209_8_a3,
author = {E. A. Onoprienko and A. M. Shelekhov},
title = {Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$},
journal = {Sbornik. Mathematics},
pages = {1164--1210},
publisher = {mathdoc},
volume = {209},
number = {8},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/}
}
TY - JOUR
AU - E. A. Onoprienko
AU - A. M. Shelekhov
TI - Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$
JO - Sbornik. Mathematics
PY - 2018
SP - 1164
EP - 1210
VL - 209
IS - 8
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/
LA - en
ID - SM_2018_209_8_a3
ER -
E. A. Onoprienko; A. M. Shelekhov. Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1164-1210. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/