Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1164-1210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The infinitesimal properties of multidimensional Bol three-webs with covariantly constant curvature tensor (webs $B_m^{\triangledown}$) are considered, and a foundation for classifying such webs in accordance with the rank of the torsion tensor is laid. For a three-web $B_m^{\triangledown}$ of rank $\rho$ Cartan's method is used to construct an adapted frame and find the corresponding system of (differential) structure equations. A three-web $B_m^{\triangledown}$ of rank $\rho$ is shown to have a normal subweb that is a group web; the corresponding factor web is a regular three-web. By integrating the structure equations new families of examples of multidimensional three-webs of special form and smooth Bol loops are discovered which are generalizations of a semidirect product of two Abelian Lie groups. Bibliography: 40 titles.
Keywords: multidimensional three-web, Bol three-web, elastic three-web, $G$-web, smooth Bol loop.
@article{SM_2018_209_8_a3,
     author = {E. A. Onoprienko and A. M. Shelekhov},
     title = {Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$},
     journal = {Sbornik. Mathematics},
     pages = {1164--1210},
     year = {2018},
     volume = {209},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/}
}
TY  - JOUR
AU  - E. A. Onoprienko
AU  - A. M. Shelekhov
TI  - Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1164
EP  - 1210
VL  - 209
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/
LA  - en
ID  - SM_2018_209_8_a3
ER  - 
%0 Journal Article
%A E. A. Onoprienko
%A A. M. Shelekhov
%T Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$
%J Sbornik. Mathematics
%D 2018
%P 1164-1210
%V 209
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/
%G en
%F SM_2018_209_8_a3
E. A. Onoprienko; A. M. Shelekhov. Bol three-webs $B_m^{\triangledown}$ with torsion tensor of rank $\rho$. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1164-1210. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a3/

[1] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser Verlag, Basel und Stuttgart, 1955, 108 pp. | MR | MR | Zbl

[2] M. A. Akivis, A. M. Shelekhov, Geometry and algebra of multidimensional three-webs, Math. Appl. (Soviet Ser.), 82, Kluwer Acad. Publ., Dordrecht, 1992, xvii+358 pp. | DOI | MR | Zbl

[3] M. A. Akivis, A. M. Shelekhov, Mnogomernye tri-tkani i ikh prilozheniya, Tver. gos. un-t, Tver, 2010, 307 pp.

[4] A. A. Utkin, A. M. Shelekhov, “Three-webs defined by a linear differential equation”, Russian Math. (Iz. VUZ), 45:11 (2001), 52–55 | MR | Zbl

[5] A. A. Utkin, A. M. Shelekhov, “Three-webs defined by the Riccati equation”, Russian Math. (Iz. VUZ), 48:11 (2004), 79–82 | MR

[6] E. V. Ferapontov, “Slabo nelineinye polugamiltonovy sistemy differentsialnykh uravnenii s tochki zreniya teorii tkanei”, Uch. zap. Tartusskogo gos. un-ta, 1988, no. 803, 103–114 | MR | Zbl

[7] E. V. Ferapontov, “Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions”, Funct. Anal. Appl., 23:2 (1989), 151–153 | DOI | MR | Zbl

[8] E. V. Ferapontov, “Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by methods of the theory of webs”, Math. USSR-Sb., 71:1 (1992), 65–79 | DOI | MR | Zbl

[9] E. V. Ferapontov, “Equations of hydrodynamic type from the point of view of the theory of webs”, Math. Notes, 50:5 (1991), 1162–1170 | DOI | MR | Zbl

[10] A. I. Nesterov, “Kvazigruppovye idei v fizike”, Kvazigruppy i neassotsiativnye algebry v fizike (Tartu, 1989), Tr. In-ta fiziki, 66, Tartu, 1990, 107–120 | MR | Zbl

[11] A. A. Duyunova, “Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations”, Russian Math. (Iz. VUZ), 56:2 (2012), 37–49 | DOI | MR | Zbl

[12] Shiing-Shen Chern, “Eine Invariantentheorie der Dreigewebe aus $r$-dimensionalen Mannigfaltigkeiten im $R_{2r}$”, Abh. Math. Sem. Univ. Hamburg, 11:1 (1935), 333–358 | DOI | MR | Zbl

[13] M. A. Akivis, “O tri-tkanyakh mnogomernykh poverkhnostei”, Tr. Geom. semin., 2, VINITI, M., 1969, 7–31 | MR | Zbl

[14] A. I. Maltsev, “Analiticheskie lupy”, Matem. sb., 36(78):3 (1955), 569–576 | MR | Zbl

[15] L. V. Sabinin, P. O. Mikheev, Teoriya gladkikh lup Bola, Un-t druzhby narodov, M., 1985, 81 pp. | MR | Zbl

[16] G. Bol, “Gewebe und Gruppen”, Math. Ann., 114:1 (1937), 414–431 | DOI | MR | Zbl

[17] V. D. Belousov, Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 223 pp. | MR | Zbl

[18] A. D. Ivanov, “Ob interpretatsii chetyrekhmernykh tkanei Bolya v trekhmernom proektivnom prostranstve”, Geometriya odnorodnykh prostranstv, Moskovsk. gos. ped. in-t, M., 1973, 42–57 | MR | Zbl

[19] A. D. Ivanov, “Konechnye uravneniya chetyrekhmernykh tkanei Bolya”, Sbornik statei po differentsialnoi geometrii, Kalininskii gos. un-t, Kalinin, 1974, 70–78 | MR

[20] A. D. Ivanov, “Four-dimensional Bol webs of elliptic or hyperbolic type”, Soviet Math. (Iz. VUZ), 19:9 (1975), 20–27 | MR | Zbl

[21] A. D. Ivanov, “Four-dimensional Bol webs of parabolic type”, Soviet Math. (Iz. VUZ), 20:1 (1976), 34–38 | MR | Zbl

[22] A. D. Ivanov, “Vzaimno polyarnye tkani Bolya giperbolicheskogo tipa”, Differentsialnaya geometriya mnogoobrazii figur, no. 10, Kaliningradskii gos. un-t, Kaliningrad, 1979, 30–35 | MR | Zbl

[23] V. I. Fedorova, “O tri-tkanyakh s chastichno kososimmetrichnym tenzorom krivizny”, Izv. vuzov. Matem., 1976, no. 11, 114–117 | MR | Zbl

[24] V. I. Fedorova, “Ob odnom klasse tri-tkanei $W_6$ s chastichno kososimmetrichnym tenzorom krivizny”, Ukr. geom. sb., 20 (1977), 115–124 | MR | Zbl

[25] V. I. Fedorova, “A condition defining multidimensional Bol three-webs”, Sib. Math. J., 19:4 (1979), 657–661 | DOI | MR | Zbl

[26] V. I. Fedorova, “Shestimernye tri-tkani Bolya s simmetrichnym tenzorom $a_{ij}$”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1981, 110–123 | MR | Zbl

[27] V. I. Fedorova, “Ob interpretatsii shestimernoi tri-tkani Bolya v trekhmernom proektivnom prostranstve”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1982, 142–148 | MR | Zbl

[28] V. I. Fedorova, “O klassifikatsii shestimernykh tri-tkanei Bolya”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1984, 124–132 | MR | Zbl

[29] M. A. Akivis, A. M. Shelekhov, “The calculation of curvature and torsion tensors for a multidimensional 3-web, and the associator of its local quasi-group”, Sib. Math. J., 12:5 (1971), 685–689 | DOI | MR | Zbl

[30] A. M. Shelekhov, O tpi-tkanyakh s elastichnymi koopdinatnymi lupami, Dep. v VINITI 2.12.1987, No 8465-V87, Kalininskii gos. un-t, Kalinin

[31] A. M. Shelekhov, “Analytic solutions of the functional equation $(xy)x=x(yx)$”, Math. Notes, 50:4 (1991), 1073–1078 | DOI | MR | Zbl

[32] A. M. Shelekhov, “On a subclass of Bol loops”, Webs and quasigroups, Tver State Univ., Tver, 1994, 27–33 | MR | Zbl

[33] A. M. Shelekhov, “The structure of Bol web $E_1$”, Webs and quasigroups, Tver State Univ., Tver, 1994, 34–46 | MR | Zbl

[34] G. A. Balandina, A. M. Shelekhov, “On general theory of elastic webs”, Webs and quasigroups, Tver State Univ., Tver, 1995, 62–74 | MR | Zbl

[35] K. R. Dzhukashev, A. M. Shelekhov, “Multidimensional smooth loops with universal elasticity”, Sb. Math., 206:5 (2015), 650–675 | DOI | DOI | MR | Zbl

[36] M. V. Antipova, “O tkanyakh Bola s pochti nulevym tenzorom krivizny”, Izv. PGPU im. V. G. Belinskogo, 2011, no. 26, 28–34

[37] G. A. Tolstikhina, A. M. Shelekhov, “Left Bol three-webs with the $IC$-property”, Russian Math. (Iz. VUZ), 57:5 (2013), 20–28 | DOI | MR | Zbl

[38] G. A. Tolstikhina, A. M. Shelekhov, “On the three-web associated to the core of a left Bol three-web”, Russian Math. (Iz. VUZ), 58:12 (2014), 70–74 | DOI | MR | Zbl

[39] G. A. Tolstikhina, A. M. Shelekhov, “On structure equations of a three-web defined by the core of a given left Bol three-web”, Russian Math. (Iz. VUZ), 59:8 (2015), 62–69 | DOI | MR | Zbl

[40] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl