On divisors of small canonical degree on Godeaux surfaces
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1155-1163

Voir la notice de l'article provenant de la source Math-Net.Ru

Pre-spectral data $(X,C,D)$ coding the rank-1 commutative subalgebras of a certain completion $\widehat D$ of the algebra of differential operators $D=k[[x_1,x_2]][\partial_1,\partial_2]$, where $k$ is an algebraically closed field of characteristic 0, are shown to exist. Here $X$ is a Godeaux surface, $C$ is an effective ample divisor represented by a smooth curve, $h^0(X,\mathscr O_X(C))=1$ and $D$ is a divisor on $X$ satisfying the conditions $(D, C)_X=g(C)-1$, $h^i(X,\mathscr O_X(D))=0$ for $i=0,1,2$ and $h^0(X,\mathscr O_X(D+C))=1$. Bibliography: 26 titles.
Keywords: pre-spectral data for commutative subalgebras of rank $1$, algebras of differential operators
Mots-clés : Godeaux surfaces.
@article{SM_2018_209_8_a2,
     author = {Vik. S. Kulikov},
     title = {On divisors of small canonical degree on {Godeaux} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1155--1163},
     publisher = {mathdoc},
     volume = {209},
     number = {8},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On divisors of small canonical degree on Godeaux surfaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1155
EP  - 1163
VL  - 209
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/
LA  - en
ID  - SM_2018_209_8_a2
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On divisors of small canonical degree on Godeaux surfaces
%J Sbornik. Mathematics
%D 2018
%P 1155-1163
%V 209
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/
%G en
%F SM_2018_209_8_a2
Vik. S. Kulikov. On divisors of small canonical degree on Godeaux surfaces. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1155-1163. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/