On divisors of small canonical degree on Godeaux surfaces
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1155-1163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pre-spectral data $(X,C,D)$ coding the rank-1 commutative subalgebras of a certain completion $\widehat D$ of the algebra of differential operators $D=k[[x_1,x_2]][\partial_1,\partial_2]$, where $k$ is an algebraically closed field of characteristic 0, are shown to exist. Here $X$ is a Godeaux surface, $C$ is an effective ample divisor represented by a smooth curve, $h^0(X,\mathscr O_X(C))=1$ and $D$ is a divisor on $X$ satisfying the conditions $(D, C)_X=g(C)-1$, $h^i(X,\mathscr O_X(D))=0$ for $i=0,1,2$ and $h^0(X,\mathscr O_X(D+C))=1$. Bibliography: 26 titles.
Keywords: pre-spectral data for commutative subalgebras of rank $1$, algebras of differential operators
Mots-clés : Godeaux surfaces.
@article{SM_2018_209_8_a2,
     author = {Vik. S. Kulikov},
     title = {On divisors of small canonical degree on {Godeaux} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1155--1163},
     year = {2018},
     volume = {209},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On divisors of small canonical degree on Godeaux surfaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1155
EP  - 1163
VL  - 209
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/
LA  - en
ID  - SM_2018_209_8_a2
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On divisors of small canonical degree on Godeaux surfaces
%J Sbornik. Mathematics
%D 2018
%P 1155-1163
%V 209
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/
%G en
%F SM_2018_209_8_a2
Vik. S. Kulikov. On divisors of small canonical degree on Godeaux surfaces. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1155-1163. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a2/

[1] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | DOI | MR | Zbl

[2] I. Burban, A. Zheglov, Cohen–Macaulay modules over the algebra of planar quasi-invariants and Calogero–Moser systems, arXiv: 1703.01762

[3] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Ch. 4–6, Actualités Sci. Indust., 1337, Hermann, Paris, 1968, 288 pp. | MR | MR | Zbl | Zbl

[4] A. B. Zheglov, D. V. Osipov, “On some questions related to the Krichever correspondence”, Math. Notes, 81:4 (2007), 467–476 | DOI | DOI | MR | Zbl

[5] I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185 | DOI | MR | Zbl

[6] Vik. S. Kulikov, “Old and new examples of surfaces of general type with $p_g=0$”, Izv. Math., 68:5 (2004), 965–1008 | DOI | DOI | MR | Zbl

[7] Vik. S. Kulikov, “Dualizing coverings of the plane”, Izv. Math., 79:5 (2015), 1013–1042 | DOI | DOI | MR | Zbl

[8] Vik. S. Kulikov, “Plane rational quartics and K3 surfaces”, Proc. Steklov Inst. Math., 294 (2016), 95–128 | DOI | DOI | MR | Zbl

[9] Vik. S. Kulikov, E. I. Shustin, “On $G$-rigid surfaces”, Proc. Steklov Inst. Math., 298 (2017), 133–151 | DOI | DOI | Zbl

[10] Vik. S. Kulikov, V. M. Kharlamov, “On real structures on rigid surfaces”, Izv. Math., 66:1 (2002), 133–150 | DOI | DOI | MR | Zbl

[11] Vik. S. Kulikov, V. M. Kharlamov, “Surfaces with $\operatorname{DIF}\ne\operatorname{DEF}$ real structures”, Izv. Math., 70:4 (2006), 769–807 | DOI | DOI | MR | Zbl

[12] H. Kurke, D. Osipov, A. Zheglov, “Commuting differential operators and higher-dimensional algebraic varieties”, Selecta Math. (N.S.), 20:4 (2014), 1159–1195 | DOI | MR | Zbl

[13] A. B. Zheglov, H. Kurke, “Geometric properties of commutative subalgebras of partial differential operators”, Sb. Math., 206:5 (2015), 676–717 | DOI | DOI | MR | Zbl

[14] M. Manetti, “On the moduli space of diffeomorphic algebraic surfaces”, Invent. Math., 143:1 (2001), 29–76 | DOI | MR | Zbl

[15] D. V. Osipov, “Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl

[16] A. N. Parshin, “On a ring of formal pseudodifferential operators”, Proc. Steklov Inst. Math., 224 (1999), 266–280 | MR | Zbl

[17] A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76 | DOI | DOI | MR | Zbl

[18] V. V. Przyjalkowski, C. A. Shramov, “On weak Landau–Ginzburg models for complete intersections in Grassmannians”, Russian Math. Surveys, 69:6 (2014), 1129–1131 | DOI | DOI | MR | Zbl

[19] V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332 | DOI | MR | Zbl

[20] V. V. Przyjalkowski, C. A. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians”, Proc. Steklov Inst. Math., 290 (2015), 91–102 | DOI | DOI | MR | Zbl

[21] V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013 | DOI | DOI | MR | Zbl

[22] V. Przyjalkowski, C. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes”, Bull. Korean Math. Soc., 54:5 (2017), 1527–1575 | MR

[23] J.-P. Serre, Cours d'arithmétique, Presses Universitaires de France, Paris, 1970, 188 pp. | MR | MR | Zbl | Zbl

[24] A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814 | DOI | MR | Zbl

[25] A. B. Zheglov, “Amazing example of nonrational smooth spectral surfaces”, Sb. Math., 209:8 (2018) | DOI

[26] A. B. Zheglov, Two dimensional KP systems and their solvability, arXiv: math-ph/0503067v2