Surprising examples of nonrational smooth spectral surfaces
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1131-1154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study necessary and sufficient algebro-geometric conditions for the existence of a nontrivial commutative subalgebra of rank $1$ in $\widehat{D}$, a completion of the algebra of partial differential operators in two variables, which can be thought of as a simple algebraic analogue of the algebra of analytic pseudodifferential operators on a manifold. These are conditions on a projective (spectral) surface; they are encoded in a new notion of pre-spectral data. For smooth surfaces the sufficient conditions look especially simple. On a smooth projective surface there should exist 1) an ample integral curve $C$ with $C^2=1$ and $h^0(X,\mathscr{O}_X(C))=1$; 2) a divisor $D$ with $(D, C)_X=g(C)-1$, $h^i(X,\mathscr{O}_X(D))=0$, $i=0,1,2$, and $h^0(X,\mathscr{O}_X(D+C))=1$. Amazingly, there are examples of such surfaces for which the corresponding commutative subalgebras do not admit isospectral deformations. Bibliography: 45 titles.
Keywords: commuting differential operators, commuting difference operators, quantum integrable systems, algebraic KP theory, algebraic surfaces
Mots-clés : Godeaux surfaces.
@article{SM_2018_209_8_a1,
     author = {A. B. Zheglov},
     title = {Surprising examples of nonrational smooth spectral surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1131--1154},
     year = {2018},
     volume = {209},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/}
}
TY  - JOUR
AU  - A. B. Zheglov
TI  - Surprising examples of nonrational smooth spectral surfaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1131
EP  - 1154
VL  - 209
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/
LA  - en
ID  - SM_2018_209_8_a1
ER  - 
%0 Journal Article
%A A. B. Zheglov
%T Surprising examples of nonrational smooth spectral surfaces
%J Sbornik. Mathematics
%D 2018
%P 1131-1154
%V 209
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/
%G en
%F SM_2018_209_8_a1
A. B. Zheglov. Surprising examples of nonrational smooth spectral surfaces. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1131-1154. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/

[1] L. Bădescu, Projective geometry and formal geometry, IMPAN Monogr. Mat. (N. S.), 65, Birkhäuser Verlag, Basel, 2004, xiv+209 pp. | DOI | MR | Zbl

[2] Yu. Berest, P. Etingof, V. Ginzburg, “Cherednik algebras and differential operators on quasi-invariants”, Duke Math. J., 118:2 (2003), 279–337 | DOI | MR | Zbl

[3] Yu. Berest, A. Kasman, “$\mathscr D$-modules and Darboux transformations”, Lett. Math. Phys., 43:3 (1998), 279–294 | DOI | MR | Zbl

[4] I. Burban, A. Zheglov, Cohen–Macaulay modules over the algebra of planar quasi-invariants and Calogero–Moser systems, arXiv: 1703.01762

[5] N. Bourbaki, Éléments de mathématique. Algèbre commutative, v. 27, 28, 30, 31, Actualités Sci. Indust., 1290, 1293, 1308, 1314, Hermann, Paris, 1961–1965, 187 pp., 183 pp., 207 pp., iii+146 pp. | MR | MR | MR | MR | MR | Zbl | Zbl

[6] O. Chalykh, “Algebro-geometric Schrödinger operators in many dimensions”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 947–971 | DOI | MR | Zbl

[7] O. A. Chalykh, A. P. Veselov, “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126:3 (1990), 597–611 | DOI | MR | Zbl

[8] A. P. Veselov, K. L. Styrkas, O. A. Chalykh, “Algebraic integrability for the Schrödinger equation and finite reflection groups”, Theoret. and Math. Phys., 94:2 (1993), 182–197 | DOI | MR | Zbl

[9] O. Chalykh, M. Feigin, A. Veselov, “New integrable generalizations of Calogero–Moser quantum problem”, J. Math. Phys., 39:2 (1998), 695–703 | DOI | MR | Zbl

[10] B. A. Dubrovin, “Matrix finite-zone operators”, J. Soviet Math., 28:1 (1985), 20–50 | DOI | MR | Zbl

[11] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl

[12] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 1990, 173–280 | DOI | MR | MR | Zbl | Zbl

[13] M. Feigin, D. Johnston, “A class of Baker–Akhiezer arrangements”, Comm. Math. Phys., 328:3 (2014), 1117–1157 | DOI | MR | Zbl

[14] P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465 | DOI | MR | Zbl

[15] A. Grothendieck, “Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes”, Inst. Hautes Études Sci. Publ. Math., 8 (1961), 5–222 | MR

[16] A. Grothendieck, “Éléments de géométrie algèbrique. IV. Étude locale des schémas et des morphismes de schémas. III”, Inst. Hautes Études Sci. Publ. Math., 28 (1966), 5–255 | MR | Zbl

[17] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl

[18] G. J. Heckman, “A remark on the Dunkl differential-difference operators”, Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, 181–191 | MR | Zbl

[19] G. J. Heckman, E. M. Opdam, “Root systems and hypergeometric functions. I”, Compositio Math., 64:3 (1987), 329–352 | MR | Zbl

[20] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl

[21] I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185 | DOI | MR | Zbl

[22] I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510 | DOI | DOI | MR | Zbl

[23] Vik. S. Kulikov, “On divisors of small canonical degree on the Godaux surfaces”, Sb. Math., 209:8 (2018) | DOI

[24] H. Kurke, D. Osipov, A. Zheglov, “Commuting differential operators and higher-dimensional algebraic varieties”, Selecta Math. (N. S.), 20:4 (2014), 1159–1195 | DOI | MR | Zbl

[25] A. B. Zheglov, H. Kurke, “Geometric properties of commutative subalgebras of partial differential operators”, Sb. Math., 206:5 (2015), 676–717 | DOI | DOI | MR | Zbl

[26] G. S. Mauleshova, A. E. Mironov, “One-point commuting difference operators of rank 1”, Dokl. Math., 93:1 (2016), 62–64 ; arXiv: 1507.00527 | DOI | MR | Zbl

[27] A. E. Mironov, “Commutative rings of differential operators corresponding to multidimensional algebraic varieties”, Siberian Math. J., 43:5 (2002), 888–898 | DOI | MR | Zbl

[28] K. Cho, A. Mironov, A. Nakayashiki, “Baker–Akhiezer modules on the intersections of shifted theta divisors”, Publ. Res. Inst. Math. Sci., 47:2 (2011), 553–567 | DOI | MR | Zbl

[29] M. Mulase, “Category of vector bundles on algebraic curves and infinite dimensional Grassmanians”, Internat. J. Math., 1:3 (1990), 293–342 | DOI | MR | Zbl

[30] M. Mulase, “Algebraic theory of the KP equations”, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, 151–217 | MR | Zbl

[31] A. Nakayashiki, “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116:1 (1994), 65–100 | DOI | MR | Zbl

[32] A. Nakayashiki, “Structure of Baker–Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems”, Duke Math. J., 62:2 (1991), 315–358 | DOI | MR | Zbl

[33] D. V. Osipov, “The Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl

[34] S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl

[35] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl

[36] A. B. Zheglov, D. V. Osipov, “On some questions related to the Krichever correspondence”, Math. Notes, 81:4 (2007), 467–476 | DOI | DOI | MR | Zbl

[37] M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR

[38] A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76 | DOI | DOI | MR | Zbl

[39] A. N. Parshin, “Integrable systems and local fields”, Comm. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl

[40] E. Previato, “Multivariable Burchnall–Chaundy theory”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 1155–1177 | DOI | MR | Zbl

[41] V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332 | DOI | MR | Zbl

[42] V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013 | DOI | DOI | MR | Zbl

[43] M. Rothstein, “Dynamics of the Krichever construction in several variables”, J. Reine Angew. Math., 2004:572 (2004), 111–138 | DOI | MR | Zbl

[44] A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814 | DOI | MR | Zbl

[45] A. B. Zheglov, Puchki bez krucheniya na mnogoobraziyakh i integriruemye sistemy, Diss. ... dokt. fiz.-matem. nauk, Matem. in-t im. V. A. Steklova RAN, M., 2016, 201 pp. http://www.mi.ras.ru/dis/ref16/zheglov/dis.pdf