Surprising examples of nonrational smooth spectral surfaces
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1131-1154

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study necessary and sufficient algebro-geometric conditions for the existence of a nontrivial commutative subalgebra of rank $1$ in $\widehat{D}$, a completion of the algebra of partial differential operators in two variables, which can be thought of as a simple algebraic analogue of the algebra of analytic pseudodifferential operators on a manifold. These are conditions on a projective (spectral) surface; they are encoded in a new notion of pre-spectral data. For smooth surfaces the sufficient conditions look especially simple. On a smooth projective surface there should exist 1) an ample integral curve $C$ with $C^2=1$ and $h^0(X,\mathscr{O}_X(C))=1$; 2) a divisor $D$ with $(D, C)_X=g(C)-1$, $h^i(X,\mathscr{O}_X(D))=0$, $i=0,1,2$, and $h^0(X,\mathscr{O}_X(D+C))=1$. Amazingly, there are examples of such surfaces for which the corresponding commutative subalgebras do not admit isospectral deformations. Bibliography: 45 titles.
Keywords: commuting differential operators, commuting difference operators, quantum integrable systems, algebraic KP theory, algebraic surfaces
Mots-clés : Godeaux surfaces.
@article{SM_2018_209_8_a1,
     author = {A. B. Zheglov},
     title = {Surprising examples of nonrational smooth spectral surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1131--1154},
     publisher = {mathdoc},
     volume = {209},
     number = {8},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/}
}
TY  - JOUR
AU  - A. B. Zheglov
TI  - Surprising examples of nonrational smooth spectral surfaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1131
EP  - 1154
VL  - 209
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/
LA  - en
ID  - SM_2018_209_8_a1
ER  - 
%0 Journal Article
%A A. B. Zheglov
%T Surprising examples of nonrational smooth spectral surfaces
%J Sbornik. Mathematics
%D 2018
%P 1131-1154
%V 209
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/
%G en
%F SM_2018_209_8_a1
A. B. Zheglov. Surprising examples of nonrational smooth spectral surfaces. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1131-1154. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a1/