@article{SM_2018_209_8_a0,
author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
title = {On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces},
journal = {Sbornik. Mathematics},
pages = {1107--1130},
year = {2018},
volume = {209},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/}
}
TY - JOUR AU - A. V. Arutyunov AU - E. S. Zhukovskiy AU - S. E. Zhukovskiy TI - On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces JO - Sbornik. Mathematics PY - 2018 SP - 1107 EP - 1130 VL - 209 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/ LA - en ID - SM_2018_209_8_a0 ER -
%0 Journal Article %A A. V. Arutyunov %A E. S. Zhukovskiy %A S. E. Zhukovskiy %T On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces %J Sbornik. Mathematics %D 2018 %P 1107-1130 %V 209 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/ %G en %F SM_2018_209_8_a0
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1107-1130. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/
[1] J. Saint Raymond, “Points fixes des contractions multivoques”, Fixed point theory and applications (Marseille, 1989), Pitman Res. Notes Math. Ser., 252, Longman Sci. Tech., Harlow, 1991, 359–375 | MR | Zbl
[2] J. Saint Raymond, “Multivalued contractions”, Set-Valued Anal., 2:4 (1994), 559–571 | DOI | MR | Zbl
[3] A. V. Arutyunov, B. D. Gel'man, “On the structure of the set of coincidence points”, Sb. Math., 206:3 (2015), 370–388 | DOI | DOI | MR | Zbl
[4] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl
[5] G. Beer, A. L. Dontchev, “The weak Ekeland variational principle and fixed points”, Nonlinear Anal., 102 (2014), 91–96 | DOI | MR | Zbl
[6] M. Durea, R. Strugariu, “Metric subregularity of composition set-valued mappings with applications to fixed point theory”, Set-Valued Var. Anal., 24:2 (2016), 231–251 | DOI | MR | Zbl
[7] A. Uderzo, “A metric version of Milyutin theorem”, Set-Valued Var. Anal., 20:2 (2012), 279–306 | DOI | MR | Zbl
[8] A. Uderzo, “On a perturbation approach to open mapping theorems”, Optim. Methods. Softw., 25:1 (2010), 143–167 | DOI | MR | Zbl
[9] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl
[10] A. L. Dontchev, H. Frankowska, “Lyusternik–Graves theorem and fixed points”, Proc. Amer. Math. Soc., 139:2 (2011), 521–534 | DOI | MR | Zbl
[11] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology Appl., 179 (2015), 13–33 | DOI | MR | Zbl
[12] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology Appl., 201 (2016), 330–343 | DOI | MR | Zbl
[13] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | DOI | MR | Zbl
[14] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Izd. 2-e, ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl
[15] S. B. Nadler, jr., “Multi-valued contraction mappings”, Pacific J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl
[16] A. V. Arutyunov, S. E. Zhukovskiy, “Perturbation of solutions of the coincidence point problem for two mappings”, Dokl. Math., 89:3 (2014), 346–348 | DOI | DOI | MR | Zbl
[17] A. V. Arutyunov, “The coincidence point problem for set-valued mappings and Ulam–Hyers stability”, Dokl. Math., 89:2 (2014), 188–191 | DOI | DOI | MR | Zbl
[18] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Anal., 75:3 (2012), 1026–1044 | DOI | MR | Zbl
[19] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl
[20] R. DeMarr, “Partially ordered spaces and metric spaces”, Amer. Math. Monthly, 72:6 (1965), 628–631 | DOI | MR | Zbl
[21] E. Bishop, R. R. Phelps, “The support functionals of a convex set”, Proceedings of the symposium in pure mathematics, v. VII, Convexity, Amer. Math. Soc., Providence, RI, 1963, 27–35 | MR | Zbl