On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces
Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1107-1130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of the coincidence set of two mappings are studied. Both single-valued and set-valued mappings are considered. Estimates for the cardinality of the coincidence set are obtained for mappings of metric and partially ordered spaces. For mappings of a normed space to a metric space necessary and sufficient conditions that there exist at least two coincidence points, sufficient conditions that there exist at least $n$ coincidence points, and sufficient conditions that the coincidence set is infinite are given. For abstract inclusions in metric and normed spaces necessary and sufficient conditions that at least one solution exists, sufficient conditions that there exist at least $n$ solutions, and sufficient conditions that the solution set is infinite are put forward. All the results obtained are equally meaningful for set-valued and single-valued mappings. Bibliography: 21 titles.
Keywords: coincidence point, covering mapping.
@article{SM_2018_209_8_a0,
     author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
     title = {On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces},
     journal = {Sbornik. Mathematics},
     pages = {1107--1130},
     year = {2018},
     volume = {209},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - E. S. Zhukovskiy
AU  - S. E. Zhukovskiy
TI  - On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1107
EP  - 1130
VL  - 209
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/
LA  - en
ID  - SM_2018_209_8_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A E. S. Zhukovskiy
%A S. E. Zhukovskiy
%T On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces
%J Sbornik. Mathematics
%D 2018
%P 1107-1130
%V 209
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/
%G en
%F SM_2018_209_8_a0
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces. Sbornik. Mathematics, Tome 209 (2018) no. 8, pp. 1107-1130. http://geodesic.mathdoc.fr/item/SM_2018_209_8_a0/

[1] J. Saint Raymond, “Points fixes des contractions multivoques”, Fixed point theory and applications (Marseille, 1989), Pitman Res. Notes Math. Ser., 252, Longman Sci. Tech., Harlow, 1991, 359–375 | MR | Zbl

[2] J. Saint Raymond, “Multivalued contractions”, Set-Valued Anal., 2:4 (1994), 559–571 | DOI | MR | Zbl

[3] A. V. Arutyunov, B. D. Gel'man, “On the structure of the set of coincidence points”, Sb. Math., 206:3 (2015), 370–388 | DOI | DOI | MR | Zbl

[4] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[5] G. Beer, A. L. Dontchev, “The weak Ekeland variational principle and fixed points”, Nonlinear Anal., 102 (2014), 91–96 | DOI | MR | Zbl

[6] M. Durea, R. Strugariu, “Metric subregularity of composition set-valued mappings with applications to fixed point theory”, Set-Valued Var. Anal., 24:2 (2016), 231–251 | DOI | MR | Zbl

[7] A. Uderzo, “A metric version of Milyutin theorem”, Set-Valued Var. Anal., 20:2 (2012), 279–306 | DOI | MR | Zbl

[8] A. Uderzo, “On a perturbation approach to open mapping theorems”, Optim. Methods. Softw., 25:1 (2010), 143–167 | DOI | MR | Zbl

[9] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl

[10] A. L. Dontchev, H. Frankowska, “Lyusternik–Graves theorem and fixed points”, Proc. Amer. Math. Soc., 139:2 (2011), 521–534 | DOI | MR | Zbl

[11] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology Appl., 179 (2015), 13–33 | DOI | MR | Zbl

[12] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology Appl., 201 (2016), 330–343 | DOI | MR | Zbl

[13] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | DOI | MR | Zbl

[14] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Izd. 2-e, ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl

[15] S. B. Nadler, jr., “Multi-valued contraction mappings”, Pacific J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl

[16] A. V. Arutyunov, S. E. Zhukovskiy, “Perturbation of solutions of the coincidence point problem for two mappings”, Dokl. Math., 89:3 (2014), 346–348 | DOI | DOI | MR | Zbl

[17] A. V. Arutyunov, “The coincidence point problem for set-valued mappings and Ulam–Hyers stability”, Dokl. Math., 89:2 (2014), 188–191 | DOI | DOI | MR | Zbl

[18] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Anal., 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[19] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl

[20] R. DeMarr, “Partially ordered spaces and metric spaces”, Amer. Math. Monthly, 72:6 (1965), 628–631 | DOI | MR | Zbl

[21] E. Bishop, R. R. Phelps, “The support functionals of a convex set”, Proceedings of the symposium in pure mathematics, v. VII, Convexity, Amer. Math. Soc., Providence, RI, 1963, 27–35 | MR | Zbl