Mots-clés : multiple orthogonal polynomials, Hermite-Padé approximations
@article{SM_2018_209_7_a4,
author = {G. L\'opez Lagomasino and W. Van Assche},
title = {Riemann-Hilbert analysis for {a~Nikishin} system},
journal = {Sbornik. Mathematics},
pages = {1019--1050},
year = {2018},
volume = {209},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a4/}
}
G. López Lagomasino; W. Van Assche. Riemann-Hilbert analysis for a Nikishin system. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 1019-1050. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a4/
[1] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | DOI | MR | Zbl
[2] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[3] A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants”, Sb. Math., 208:3 (2017), 313–334 | DOI | DOI | MR | Zbl
[4] A. I. Aptekarev, V. Kalyagin, G. López Lagomasino, I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1-2 (2006), 346–370 | DOI | MR | Zbl
[5] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl
[6] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl
[7] A. I. Aptekarev, W. Van Assche, M. L. Yattselev, “Hermite–Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports”, Comm. Pure Appl. Math., 70:3 (2017), 444–510 | DOI | MR | Zbl
[8] P. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. I”, Comm. Math. Phys., 252:1-3 (2004), 43–76 | DOI | MR | Zbl
[9] A. Branquinho, U. Fidalgo, A. Foulquié Moreno, “Riemann–Hilbert problem associated with Angelesco systems”, J. Comput. Appl. Math., 233:3 (2009), 643–651 | DOI | MR | Zbl
[10] J. Bustamante, G. López Lagomasino, “Hermite–Padé approximation for Nikishin systems of analytic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 367–384 | DOI | MR | Zbl
[11] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp. | MR | Zbl
[12] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems”, Bull. Amer. Math. Soc. (N.S.), 26:1 (1992), 119–123 | DOI | MR | Zbl
[13] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[14] K. Deschout, A. B. J. Kuijlaars, “Double scaling limit for modified Jacobi–Angelesco polynomials”, Notions of positivity and the geometry of polynomials, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2011, 115–161 | DOI | MR | Zbl
[15] K. Driver, H. Stahl, “Normality in Nikishin systems”, Indag. Math. (N.S.), 5:2 (1994), 161–187 | DOI | MR | Zbl
[16] U. Fidalgo Prieto, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl
[17] U. Fidalgo Prieto, A. López García, G. López Lagomasino, V. N. Sorokin, “Mixed type multiple orthogonal polynomials for two Nikishin systems”, Constr. Approx., 32:2 (2010), 255–306 | DOI | MR | Zbl
[18] A. Foulquié Moreno, “Riemann–Hilbert problem for a generalized Nikishin system”, Difference equations, special functions and orthogonal polynomials, World Sci. Publ., Hackensack, NJ, 2007, 412–421 | DOI | MR | Zbl
[19] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Pade approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl
[20] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia Math. Appl., 98, Cambridge Univ. Press, Cambridge, 2005, xviii+706 pp. (paperback ed. 2009) | DOI | MR | Zbl
[21] A. R. Its, A. B. J. Kuijlaars, J. Östensson, “Critical edge behavior in unitary random matrix ensembles and the thirty-fourth Painlevé transcendent”, Int. Math. Res. Not. IMRN, 2008:9 (2008), rnn017, 67 pp. | DOI | MR | Zbl
[22] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russian Math. Surveys, 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl
[23] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706 | DOI | DOI | MR | Zbl
[24] A. B. J. Kuijlaars, “Riemann–Hilbert analysis for orthogonal polynomials”, Orthogonal polynomials and special functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 167–210 | DOI | MR | Zbl
[25] A. B. J. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398 | DOI | MR | Zbl
[26] A. López García, G. López Lagomasino, “Ratio asymptotic of Hermite–Padé orthogonal polynomials for Nikishin systems. II”, Adv. Math., 218:4 (2008), 1081–1106 | DOI | MR | Zbl
[27] G. López Lagomasino, D. Pestana, J. M. Rodríguez, D. Yakubovich, “Computation of conformal representations of compact Riemann surfaces”, Math. Comp., 79:269 (2010), 365–381 | DOI | MR | Zbl
[28] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | DOI | MR | Zbl
[29] V. Lysov, F. Wielonsky, “Strong asymptotics for multiple Laguerre polynomials”, Constr. Approx., 28:1 (2008), 61–111 | DOI | MR | Zbl
[30] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl
[31] E. M. Nikishin, “Asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[32] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | DOI | MR | MR | Zbl | Zbl
[33] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl
[34] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl
[35] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp. | DOI | MR | Zbl
[36] W. Van Assche, Orthogonal polynomials and Painlevé equations, Austral. Math. Soc. Lect. Ser., 27, Cambridge Univ. Press, Cambridge, 2018, xii+179 pp. | DOI | MR | Zbl
[37] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl
[38] M. L. Yattselev, “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Canad. J. Math., 68:5 (2016), 1159–1200 | DOI | MR | Zbl