The growth of polynomials orthogonal on the unit circle with respect to a~weight~$w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$
Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 985-1018

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the polynomials $\{\varphi_n(z,w)\}$ orthogonal on the circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$ and show that $\|\varphi_n(e^{i\theta},w)\|_{L^\infty(\mathbb{T})}$ can grow in $n$ at a certain rate. Bibliography: 21 titles.
Keywords: polynomials orthogonal on the circle
Mots-clés : Steklov's conjecture.
@article{SM_2018_209_7_a3,
     author = {S. A. Denisov},
     title = {The growth of polynomials orthogonal on the unit circle with respect to a~weight~$w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$},
     journal = {Sbornik. Mathematics},
     pages = {985--1018},
     publisher = {mathdoc},
     volume = {209},
     number = {7},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a3/}
}
TY  - JOUR
AU  - S. A. Denisov
TI  - The growth of polynomials orthogonal on the unit circle with respect to a~weight~$w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 985
EP  - 1018
VL  - 209
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_7_a3/
LA  - en
ID  - SM_2018_209_7_a3
ER  - 
%0 Journal Article
%A S. A. Denisov
%T The growth of polynomials orthogonal on the unit circle with respect to a~weight~$w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$
%J Sbornik. Mathematics
%D 2018
%P 985-1018
%V 209
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_7_a3/
%G en
%F SM_2018_209_7_a3
S. A. Denisov. The growth of polynomials orthogonal on the unit circle with respect to a~weight~$w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 985-1018. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a3/