Extremal problems in nonquasianalytic Carleman classes. Applications
Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 958-984 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extremal problem is considered in the family of functions in a nonquasianalytic Carleman class on a closed interval that vanish together with all derivatives at a point in this interval. Applications to approximation theory and, in particular, to a system of exponentials with exponents satisfying the Fejér (or Levinson) condition are indicated; an asymptotic estimate as $\delta\to 0$ is obtained for the distance in $C_{[0,\delta]}$ between a fixed exponential and the closure of the linear span of other elements of this system. Bibliography: 25 titles.
Keywords: extremal problem, minimal system of exponentials.
Mots-clés : nonquasianalytic Carleman class
@article{SM_2018_209_7_a2,
     author = {A. M. Gaisin},
     title = {Extremal problems in nonquasianalytic {Carleman} classes. {Applications}},
     journal = {Sbornik. Mathematics},
     pages = {958--984},
     year = {2018},
     volume = {209},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/}
}
TY  - JOUR
AU  - A. M. Gaisin
TI  - Extremal problems in nonquasianalytic Carleman classes. Applications
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 958
EP  - 984
VL  - 209
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/
LA  - en
ID  - SM_2018_209_7_a2
ER  - 
%0 Journal Article
%A A. M. Gaisin
%T Extremal problems in nonquasianalytic Carleman classes. Applications
%J Sbornik. Mathematics
%D 2018
%P 958-984
%V 209
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/
%G en
%F SM_2018_209_7_a2
A. M. Gaisin. Extremal problems in nonquasianalytic Carleman classes. Applications. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 958-984. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/

[1] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952, xiv+277 pp. | MR | MR | Zbl

[2] V. Matsaev, M. Sodin, “Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions”, Algebra i analiz, 14:4 (2002), 107–140 ; St. Petersburg Math. J., 14:4 (2003), 615–640 | MR | Zbl

[3] A. M. Gaisin, “Levinson's condition in the theory of entire functions: equivalent statements”, Math. Notes, 83:3 (2008), 317–326 | DOI | DOI | MR | Zbl

[4] A. A. Borichev, “Analytic quasi-analyticity and asymptotically holomorphic functions”, St. Petersburg Math. J., 4:2 (1993), 259–272 | MR | Zbl

[5] V. P. Gurarij, “On Levinson's theorem concerning normal families of analytic functions”, Semin. Math., 19, V. A. Steklov Math. Inst., Leningrad, 1972, 124–127 | MR | Zbl

[6] A. M. Gaisin, I. G. Kinzyabulatov, “A Levinson–Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007 | DOI | DOI | MR | Zbl

[7] E. M. Dyn'kin, “The pseudoanalytic extension”, J. Anal. Math., 60 (1993), 45–70 | DOI | MR | Zbl

[8] E. M. Dyn'kin, “Growth of an analytic function near its set of singular points”, J. Soviet Math., 4:4 (1975), 438–440 | DOI | MR | Zbl

[9] J. Korevaar, “Müntz approximation on arcs and Macintyre exponents”, Complex analysis Joensuu 1978 (Univ. Joensuu, Joensuu, 1978), Lecture Notes in Math., 747, Springer, Berlin, 1979, 205–218 | DOI | MR | Zbl

[10] L. Schwartz, Étude des sommes d'exponentielles, Publ. Inst. Math. Univ. Strasbourg, 5, Actualités Sci. Ind., 959, 2ième éd., Hermann, Paris, 1959, 151 pp. | MR | Zbl

[11] B. N. Khabibullin, Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2006, 171 pp.

[12] K. G. Binmore, “A density theorem with an application to gap power series”, Trans. Amer. Math. Soc., 148:2 (1970), 367–384 | DOI | MR | Zbl

[13] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2., verb. Aufl., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl

[14] W. A. J. Luxemburg, J. Korevaar, “Entire functions and Müntz–Szasz type approximation”, Trans. Amer. Math. Soc., 157 (1971), 23–37 | DOI | MR | Zbl

[15] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[16] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR | Zbl

[17] S. Mandelbroit, Kvazianaliticheskie klassy funktsii, ONTI, M.–L., 1937, 108 pp.

[18] A. Yu. Popov, Ekstremalnye zadachi v teorii tselykh funktsii, Diss. ... dokt. fiz.-matem. nauk, MGU, M., 2005, 226 pp.

[19] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, Inc., New York, 1961, x+181 pp. | MR | MR | Zbl | Zbl

[20] A. M. Gaisin, “Dirichlet series with real coefficients that are unbounded on the positive half-axis”, Sb. Math., 198:6 (2007), 793–815 | DOI | DOI | MR | Zbl

[21] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New-York, 1940, viii+246 pp. | MR | Zbl

[22] P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988(1998), xvi+606 pp. ; corr. reprint: 1998, xviii+606 pp. | DOI | MR | Zbl | MR | Zbl

[23] T. Bang, “The theory of metric spaces applied to infinitely differentiable functions”, Math. Scand., 1 (1953), 137–152 | DOI | MR | Zbl

[24] I. I. Hirschman, D. V. Widder, The convolution transform, Princeton Univ. Press, Princeton, N.J., 1955, x+268 pp. | MR | Zbl

[25] A. M. Gaisin, R. A. Gaisin, “Noncomplete systems of exponentials on arcs and Carleman nonquasianalytic classes. II”, St. Petersburg Math. J., 27:1 (2016), 33–50 | DOI | MR