Extremal problems in nonquasianalytic Carleman classes. Applications
Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 958-984

Voir la notice de l'article provenant de la source Math-Net.Ru

An extremal problem is considered in the family of functions in a nonquasianalytic Carleman class on a closed interval that vanish together with all derivatives at a point in this interval. Applications to approximation theory and, in particular, to a system of exponentials with exponents satisfying the Fejér (or Levinson) condition are indicated; an asymptotic estimate as $\delta\to 0$ is obtained for the distance in $C_{[0,\delta]}$ between a fixed exponential and the closure of the linear span of other elements of this system. Bibliography: 25 titles.
Keywords: extremal problem, minimal system of exponentials.
Mots-clés : nonquasianalytic Carleman class
@article{SM_2018_209_7_a2,
     author = {A. M. Gaisin},
     title = {Extremal problems in nonquasianalytic {Carleman} classes. {Applications}},
     journal = {Sbornik. Mathematics},
     pages = {958--984},
     publisher = {mathdoc},
     volume = {209},
     number = {7},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/}
}
TY  - JOUR
AU  - A. M. Gaisin
TI  - Extremal problems in nonquasianalytic Carleman classes. Applications
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 958
EP  - 984
VL  - 209
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/
LA  - en
ID  - SM_2018_209_7_a2
ER  - 
%0 Journal Article
%A A. M. Gaisin
%T Extremal problems in nonquasianalytic Carleman classes. Applications
%J Sbornik. Mathematics
%D 2018
%P 958-984
%V 209
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/
%G en
%F SM_2018_209_7_a2
A. M. Gaisin. Extremal problems in nonquasianalytic Carleman classes. Applications. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 958-984. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/