Extremal problems in nonquasianalytic Carleman classes. Applications
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 958-984
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An extremal problem is considered in the family of functions in a nonquasianalytic Carleman class on a closed interval that vanish together with all derivatives at a point in this interval. Applications to approximation theory and, in particular, to a system of exponentials with 
exponents satisfying the Fejér (or Levinson) condition are indicated; an asymptotic estimate as $\delta\to 0$ is obtained for the distance in $C_{[0,\delta]}$ between a fixed exponential and the closure of the linear span of other elements of this system.
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
extremal problem, minimal system of exponentials.
Mots-clés : nonquasianalytic Carleman class
                    
                  
                
                
                Mots-clés : nonquasianalytic Carleman class
@article{SM_2018_209_7_a2,
     author = {A. M. Gaisin},
     title = {Extremal problems in nonquasianalytic {Carleman} classes. {Applications}},
     journal = {Sbornik. Mathematics},
     pages = {958--984},
     publisher = {mathdoc},
     volume = {209},
     number = {7},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/}
}
                      
                      
                    A. M. Gaisin. Extremal problems in nonquasianalytic Carleman classes. Applications. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 958-984. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a2/
