@article{SM_2018_209_7_a1,
author = {L. Baratchart and J. Leblond and F. Seyfert},
title = {Constrained extremal problems in~$H^2$ and {Carleman's} formulae},
journal = {Sbornik. Mathematics},
pages = {922--957},
year = {2018},
volume = {209},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/}
}
L. Baratchart; J. Leblond; F. Seyfert. Constrained extremal problems in $H^2$ and Carleman's formulae. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 922-957. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/
[1] P. R. Ahern, D. N. Clark, “On functions orthogonal to invariant subspaces”, Acta Math., 124 (1970), 191–204 | DOI | MR | Zbl
[2] L. Aizenberg, Carleman's formulas in complex analysis. Theory and applications, Math. Appl., 244, Kluwer Acad. Publ., Dordrecht, 1993, xx+299 pp. | DOI | MR | MR | Zbl | Zbl
[3] D. Alpay, L. Baratchart, J. Leblond, “Some extremal problems linked with identification from partial frequency data”, Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia–Antipolis, 1992), Lect. Notes Control Inf. Sci., 185, Springer, Berlin, 1993, 563–573 | DOI | MR | Zbl
[4] S. Ansari, P. Enflo, “Extremal vectors and invariant subspaces”, Trans. Amer. Math. Soc., 350:2 (1998), 539–558 | DOI | MR | Zbl
[5] L. Baratchart, J. Grimm, J. Leblond, M. Olivi, F. Seyfert, F. Wielonsky, Identification d'un filtre hyperfréquences par approximation dans le domaine complexe, Technical report RT-0219, INRIA, 1998, 43 pp. https://hal.inria.fr/inria-00069952
[6] L. Baratchart, J. Grimm, J. Leblond, J. R. Partington, “Asymptotic estimates for interpolation and constrained approximation in $H^2$ by diagonalization of Toeplitz operators”, Integral Equations Operator Theory, 45:3 (2003), 269–299 | DOI | MR | Zbl
[7] L. Baratchart, J. Leblond, “Hardy approximation to $L^p$ functions on subsets of the circle with $1 \leq p\infty$”, Constr. Approx., 14:1 (1998), 41–56 | DOI | MR | Zbl
[8] L. Baratchart, J. Leblond, J. R. Partington, “Hardy approximation to $L^\infty$ functions on subsets of the circle”, Constr. Approx., 12:3 (1996), 423–435 | MR | Zbl
[9] L. Baratchart, J. Leblond, J. R. Partington, “Problems of Adamjan–Arov–Krein type on subsets of the circle and minimal norm extensions”, Constr. Approx., 16:3 (2000), 333–357 | DOI | MR | Zbl
[10] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[11] J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization. Theory and examples, CMS Books Math./Ouvrages Math. SMC, 3, 2nd ed., Springer, New York, 2006, xii+310 pp. | DOI | MR | Zbl
[12] H. Brézis, Analyse fonctionnelle. Théorie et applications, Dunod, Paris, 1999, xiv+233 pp.
[13] I. Chalendar, J. R. Partington, “Constrained approximation and invariant subspaces”, J. Math. Anal. Appl., 280:1 (2003), 176–187 | DOI | MR | Zbl
[14] I. Chalendar, J. R. Partington, M. Smith, “Approximation in reflexive Banach spaces and applications to the invariant subspace problem”, Proc. Amer. Math. Soc., 132:4 (2004), 1133–1142 | DOI | MR | Zbl
[15] S. Denisov, “On the size of the polynomials orthonormal on the unit circle with respect to a measure which is a sum of the Lebesgue measure and $P$ point masses”, Proc. Amer. Math. Soc., 144:3 (2016), 1029–1039 | DOI | MR | Zbl
[16] J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback control theory, Macmillan Publ. Co., New York, 1992, xii+227 pp. | MR
[17] P. L. Duren, Theory of $H_p$ spaces, Pure Appl. Math., 38, Academic Press, New York–London, 1970, xii+258 pp. | MR | Zbl
[18] P. A. Fuhrmann, Linear systems and operators in Hilbert spaces, McGraw-Hill International Book Co., New York, 1981, x+325 pp. | MR | Zbl
[19] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl
[20] G. M. Goluzin, V. I. Krylov, “Obobschennaya formula Carleman'a i prilozhenie ee k analiticheskomu prodolzheniyu funktsii”, Matem. sb., 40:2 (1933), 144–149 | Zbl
[21] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127, Springer-Verlag, New York, 1998, xii+284 pp. | DOI | MR | Zbl
[22] B. Jacob, J. Leblond, J.-P. Marmorat, J. R. Partington, “A constrained approximation problem arising in parameter identification”, Linear Algebra Appl., 351-352 (2002), 487–500 | DOI | MR | Zbl
[23] P. Koosis, Introduction to $H^p$ spaces, With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980, xv+376 pp. | MR | MR | Zbl | Zbl
[24] M. G. Krein, P. Ja. Nudel'man, “Approximation of $L^2(\omega_1, \omega_2)$ functions by minimum-energy transfer functions of linear systems”, Problems Inform. Transmission, 11:2 (1975), 124–142 | MR | Zbl
[25] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, 6th ed., Springer-Verlag, Berlin–New York, 1980, xii+501 pp. | MR | MR | Zbl | Zbl
[26] M. M. Lavrentiev, Some improperly posed problems of mathematical physics, Tracts in Natural Philosophy, 11, Springer, Berlin, 1967, 72 pp. | DOI | MR | Zbl | Zbl
[27] J. Leblond, J. R. Partington, “Constrained approximation and interpolation in Hilbert function spaces”, J. Math. Anal. Appl., 234:2 (1999), 500–513 | DOI | MR | Zbl
[28] J. Leblond, D. Ponomarev, “Recovery of harmonic functions from partial boundary data respecting internal pointwise values”, J. Inverse Ill-Posed Probl., 25:2 (2017), 157–174 | DOI | MR | Zbl
[29] N. K. Nikolskii, Operators, functions, and systems: an easy reading, v. I, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002, xiv+461 pp. | MR | Zbl
[30] J. R. Partington, Interpolation, identification, and sampling, London Math. Soc. Monogr. (N.S.), 17, The Clarendon Press, Oxford Univ. Press, New York, 1997, xii+267 pp. | MR | Zbl
[31] D. J. Patil, “Representation of $H^p$ functions”, Bull. Amer. Math. Soc., 78:4 (1972), 617–620 | DOI | MR | Zbl
[32] S. K. Pichorides, “On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov”, Studia Math., 44 (1972), 165–179 | DOI | MR | Zbl
[33] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl
[34] A. Schneck, “Constrained Hardy space approximation”, J. Approx. Theory, 162:8 (2010), 1466–1483 | DOI | MR | Zbl
[35] F. Seyfert, Problèmes extrémaux dans les espaces de Hardy, application à l'identification de filtres hyperfréquences à cavités couplées, These de Doctorat, Ecole des Mines, Paris, 1998
[36] M. Smith, “Constrained approximation in Banach spaces”, Constr. Approx., 19:3 (2003), 465–476 | DOI | MR | Zbl