Constrained extremal problems in~$H^2$ and Carleman's formulae
Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 922-957

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the extremal problem of best approximation to some function $f$ in $L^2(I)$, with $I$ a subset of the circle, by the trace of a Hardy function whose modulus is bounded pointwise by some gauge function on the complementary subset. Bibliography: 36 titles.
Keywords: Hardy spaces, extremal problems, approximations in the complex domain, Cauchy problem, inverse boundary problems.
@article{SM_2018_209_7_a1,
     author = {L. Baratchart and J. Leblond and F. Seyfert},
     title = {Constrained extremal problems in~$H^2$ and {Carleman's} formulae},
     journal = {Sbornik. Mathematics},
     pages = {922--957},
     publisher = {mathdoc},
     volume = {209},
     number = {7},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/}
}
TY  - JOUR
AU  - L. Baratchart
AU  - J. Leblond
AU  - F. Seyfert
TI  - Constrained extremal problems in~$H^2$ and Carleman's formulae
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 922
EP  - 957
VL  - 209
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/
LA  - en
ID  - SM_2018_209_7_a1
ER  - 
%0 Journal Article
%A L. Baratchart
%A J. Leblond
%A F. Seyfert
%T Constrained extremal problems in~$H^2$ and Carleman's formulae
%J Sbornik. Mathematics
%D 2018
%P 922-957
%V 209
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/
%G en
%F SM_2018_209_7_a1
L. Baratchart; J. Leblond; F. Seyfert. Constrained extremal problems in~$H^2$ and Carleman's formulae. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 922-957. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/