Constrained extremal problems in~$H^2$ and Carleman's formulae
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 922-957
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the extremal problem of best approximation to some function $f$ in $L^2(I)$, with $I$ a subset of the circle, by the trace of a Hardy function whose modulus is bounded pointwise by some gauge function on the complementary subset.
Bibliography: 36 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hardy spaces, extremal problems, approximations in the complex domain, Cauchy problem, inverse boundary problems.
                    
                    
                    
                  
                
                
                @article{SM_2018_209_7_a1,
     author = {L. Baratchart and J. Leblond and F. Seyfert},
     title = {Constrained extremal problems in~$H^2$ and {Carleman's} formulae},
     journal = {Sbornik. Mathematics},
     pages = {922--957},
     publisher = {mathdoc},
     volume = {209},
     number = {7},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/}
}
                      
                      
                    TY - JOUR AU - L. Baratchart AU - J. Leblond AU - F. Seyfert TI - Constrained extremal problems in~$H^2$ and Carleman's formulae JO - Sbornik. Mathematics PY - 2018 SP - 922 EP - 957 VL - 209 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/ LA - en ID - SM_2018_209_7_a1 ER -
L. Baratchart; J. Leblond; F. Seyfert. Constrained extremal problems in~$H^2$ and Carleman's formulae. Sbornik. Mathematics, Tome 209 (2018) no. 7, pp. 922-957. http://geodesic.mathdoc.fr/item/SM_2018_209_7_a1/
