Solutions of the BiHom-Yang-Baxter equation
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 901-918 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we extend the Yang-Baxter equation (YBE) into the setting of BiHom-structures and the BiHom-Yang-Baxter equation (BHYBE) is introduced. Two methods for constructing solutions of the BHYBE are discussed, one from Hopf algebras and the other from BiHom-Lie algebras. Finally, as an application, we show that a solution of the BHYBE can generate a representation of the braid group. Bibliography: 34 titles.
Keywords: BiHom-Yang-Baxter equation, BiHom-Lie algebra, BiHom-associative algebra.
@article{SM_2018_209_6_a7,
     author = {X. Fang and W. Liu},
     title = {Solutions of the {BiHom-Yang-Baxter} equation},
     journal = {Sbornik. Mathematics},
     pages = {901--918},
     year = {2018},
     volume = {209},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a7/}
}
TY  - JOUR
AU  - X. Fang
AU  - W. Liu
TI  - Solutions of the BiHom-Yang-Baxter equation
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 901
EP  - 918
VL  - 209
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a7/
LA  - en
ID  - SM_2018_209_6_a7
ER  - 
%0 Journal Article
%A X. Fang
%A W. Liu
%T Solutions of the BiHom-Yang-Baxter equation
%J Sbornik. Mathematics
%D 2018
%P 901-918
%V 209
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a7/
%G en
%F SM_2018_209_6_a7
X. Fang; W. Liu. Solutions of the BiHom-Yang-Baxter equation. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 901-918. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a7/

[1] F. Ammar, A. Makhlouf, “Hom-Lie superalgebras and Hom-Lie admissible superalgebras”, J. Algebra, 324:7 (2010), 1513–1528 | DOI | MR | Zbl

[2] E. Artin, “Theory of braids”, Ann. of Math. (2), 48 (1947), 101–126 | DOI | MR | Zbl

[3] S. Caenepeel, I. Goyvaerts, “Monoidal Hom-Hopf algebras”, Comm. Algebra, 39:6 (2011), 2216–2240 | DOI | MR | Zbl

[4] Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang, “Integrals for monoidal Hom-Hopf algebras and their applications”, J. Math. Phys., 54:7 (2013), 073515, 22 pp. | DOI | MR | Zbl

[5] Yuanyuan Chen, Liangyun Zhang, “The category of Yetter–Drinfel'd Hom-modules and the quantum Hom-Yang–Baxter equation”, J. Math. Phys., 55:3 (2014), 031702, 18 pp. | DOI | MR | Zbl

[6] Yuanyuan Chen, Liangyun Zhang, “Hom-$\mathscr{O}$-operators and Hom-Yang–Baxter equations”, Adv. Math. Phys., 2015, 823756, 11 pp. | DOI | MR | Zbl

[7] Yongsheng Cheng, Huange Qi, Representations of BiHom-Lie algebras, 2016, arXiv: 1610.04302

[8] Y. Frégier, A. Gohr, “On Hom-type algebra”, J. Gen. Lie Theory Appl., 4 (2010), G101001, 16 pp. | DOI | MR | Zbl

[9] G. Graziani, Group Hom-categories, Corso di laurea triennale in matematica, Univ. di Ferrara, 2013, 64 pp.

[10] G. Graziani, A. Makhlouf, C. Menini, F. Panaite, “BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras”, SIGMA, 11 (2015), 086, 34 pp. | DOI | MR | Zbl

[11] Shuangjian Guo, Xiu-Li Chen, “A Maschke type theorem for relative Hom-Hopf modules”, Czechoslovak Math. J., 64(139):3 (2014), 783–799 | DOI | MR | Zbl

[12] J. T. Hartwig, D. Larsson, S. D. Silvestrov, “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295:2 (2006), 314–361 | DOI | MR | Zbl

[13] Ch. Kassel, Quantum groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995, xii+531 pp. | DOI | MR | Zbl

[14] Ling Liu, Qiao-ling Guo, “On twisted smash products of monoidal Hom-Hopf algebras”, Comm. Algebra, 44:10 (2016), 4140–4164 | DOI | MR | Zbl

[15] Ling Liu, Bingliang Sheng, “Radford's biproducts and Yetter–Drinfeld modules for monoidal Hom-Hopf algebras”, J. Math. Phys., 55:3 (2014), 031701, 16 pp. | DOI | MR | Zbl

[16] A. Makhlouf, “Hom-alternative algebras and Hom-Jordan algebras”, Int. Electron. J. Algebra, 8 (2010), 177–190 | MR | Zbl

[17] A. Makhlouf, F. Panaite, “Yetter–Drinfeld modules for Hom-bialgebras”, J. Math. Phys., 55:1 (2014), 013501, 17 pp. | DOI | MR | Zbl

[18] A. Makhlouf, F. Panaite, “Hom-L-R-smash prdoucts, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra”, J. Algebra, 441 (2015), 314–343 | DOI | MR | Zbl

[19] A. Makhlouf, F. Panaite, “Twisting operators, twisted tensor products and smash products for Hom-associative algebras”, Glasg. Math. J., 58:3 (2016), 513–538 | DOI | MR | Zbl

[20] A. Makhlouf, S. D. Silvestrov, “Hom-algebras structures”, J. Gen. Lie Theory Appl., 2:2 (2008), 51–64 | DOI | MR | Zbl

[21] A. Makhlouf, S. Silvestrov, “Hom-algebras and Hom-coalgebras”, J. Algebra Appl., 9:4 (2010), 553–589 | DOI | MR | Zbl

[22] A. Makhlouf, S. Silvestrov, “Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras”, Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin, 2009, 189–206 | DOI | MR | Zbl

[23] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993, xiv+238 pp. | DOI | MR | Zbl

[24] D. E. Radford, J. Towber, “Yetter–Drinfel'd categories associated to an arbitrary bialgebra”, J. Pure Appl. Algebra, 87:3 (1993), 259–279 | DOI | MR | Zbl

[25] Yunhe Sheng, “Representations of Hom-Lie algebras”, Algebr. Represent. Theory, 15:6 (2012), 1081–1098 | DOI | MR | Zbl

[26] Yunhe Sheng, Chengming Bai, “A new approch to hom-Lie bialgebras”, J. Algebra, 399 (2014), 232–250 | DOI | MR | Zbl

[27] D. Yau, “Enveloping algebras of Hom-Lie algebras”, J. Gen. Lie Theory Appl., 2:2 (2008), 95–108 | DOI | MR | Zbl

[28] D. Yau, “Hom-algebras and homology”, J. Lie Theory, 19:2 (2009), 409–421 | MR | Zbl

[29] D. Yau, “The Hom-Yang–Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras”, J. Phys. A, 42:16 (2009), 165202, 12 pp. | DOI | MR | Zbl

[30] D. Yau, “Hom-bialgebras and comodule Hom-algebras”, Int. Electron. J. Algebra, 8 (2010), 45–64 | MR | Zbl

[31] D. Yau, “The Hom-Yang–Baxter equation and Hom-Lie algebras”, J. Math. Phys., 52:5 (2011), 053502, 19 pp. | DOI | MR | Zbl

[32] D. Yau, “Hom-quantum group. I. Quasi-triangular Hom-bialgebras”, J. Phys. A, 45:6 (2012), 065203, 23 pp. | DOI | MR | Zbl

[33] D. Yau, “The classical Hom-Yang–Baxter equation and Hom-Lie bialgebras”, Int. Electron. J. Algebra, 17 (2015), 11–45 | DOI | MR | Zbl

[34] D. N. Yetter, “Quantum groups and representations of monoidal categories”, Math. Proc. Cambridge Philos. Soc., 108:2 (1990), 261–290 | DOI | MR | Zbl