@article{SM_2018_209_6_a4,
author = {Ant. A. Klyachko and A. M. Mazhuga},
title = {Verbally closed virtually free subgroups},
journal = {Sbornik. Mathematics},
pages = {850--856},
year = {2018},
volume = {209},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a4/}
}
Ant. A. Klyachko; A. M. Mazhuga. Verbally closed virtually free subgroups. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 850-856. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a4/
[1] A. G. Myasnikov, V. Roman'kov, “Verbally closed subgroups of free groups”, J. Group Theory, 17:1 (2014), 29–40 ; arXiv: 1201.0497 | DOI | MR | Zbl
[2] V. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | DOI | MR | Zbl
[3] V. A. Roman'kov, N. G. Khisamiev, “Verbally and existentially closed subgroups of free nilpotent groups”, Algebra and Logic, 52:4 (2013), 336–351 | DOI | MR | Zbl
[4] A. M. Mazhuga, “On free decompositions of verbally closed subgroups in free products of finite groups”, J. Group Theory, 20:5 (2017), 971–986 ; arXiv: 1605.01766 | DOI | MR | Zbl
[5] Donghi Lee, “On certain $C$-test words for free groups”, J. Algebra, 247:2 (2002), 509–540 | DOI | MR | Zbl
[6] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl
[7] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, xi+311 pp. | MR | MR | Zbl | Zbl
[8] A. G. Kurosh, Teoriya grupp, 3-e izd., Nauka, M., 1967, 648 pp. ; A. G. Kurosch, Gruppentheorie, v. I, Math. Lehrbucher und Monogr., III/I, ed. 2., überarbeitete und erweiterte Aufl., Akademie-Verlag, Berlin, 1970, xxii+360 pp. ; v. II, Math. Lehrbucher und Monogr., III/II, 1972, xiv+358 pp. | MR | Zbl | MR | Zbl | MR | Zbl
[9] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[10] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl
[11] J. Stallings, Group theory and three-dimensional manifolds, Yale Math. Monogr., 4, Yale Univ. Press, New Haven, CT–London, 1971, v+65 pp. | MR | Zbl
[12] A. Karrass, A. Pietrowski, D. Solitar, “Finite and infinite cyclic extensions of free groups”, J. Austral. Math. Soc., 16 (1973), 458–466 | DOI | MR | Zbl
[13] Zh.-P. Serr, “Derevya, amalgamy i ${SL}_2$”, Matematika, 18:1 (1974), 3–51 ; 18:2, 3–27 ; J.-P. Serre, Arbres, amalgames, $\mathrm{SL}_2$, Rédigé avec la collaboration de H. Bass, Astérisque, 46, Soc. Math. France, Paris, 1977, 189 pp. ; J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980, ix+142 с. | Zbl | Zbl | MR | Zbl | MR | Zbl
[14] D. T. Wise, “The residual finiteness of positive one-relator groups”, Comment. Math. Helv., 76:2 (2001), 314–338 | DOI | MR | Zbl