Galois theory, the classification of finite simple groups and a dense winding of a torus
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 840-849 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Galois group of the Zelikin-Lokutsievskii polynomial is studied. It is established that, in the generalized Fuller problem, for any positive integer $k\leqslant 249\,994\,914$ there is an optimal control going along a dense winding of the $k$-dimensional torus in finite time. In the generalized Fuller problem, under the assumption that the Zelikin-Lokutsievskiy polynomials are irreducible over the field of rational numbers for almost all prime powers it is shown that there is an optimal control passing along a dense winding of the torus of any preassigned dimension in finite time. Many examples are considered. Bibliography: 7 titles.
Keywords: optimal control, dense winding, classification of finite simple groups, Wolstenholme primes.
Mots-clés : Galois group
@article{SM_2018_209_6_a3,
     author = {D. D. Kiselev},
     title = {Galois theory, the classification of finite simple groups and a~dense winding of a~torus},
     journal = {Sbornik. Mathematics},
     pages = {840--849},
     year = {2018},
     volume = {209},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a3/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Galois theory, the classification of finite simple groups and a dense winding of a torus
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 840
EP  - 849
VL  - 209
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a3/
LA  - en
ID  - SM_2018_209_6_a3
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Galois theory, the classification of finite simple groups and a dense winding of a torus
%J Sbornik. Mathematics
%D 2018
%P 840-849
%V 209
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a3/
%G en
%F SM_2018_209_6_a3
D. D. Kiselev. Galois theory, the classification of finite simple groups and a dense winding of a torus. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 840-849. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a3/

[1] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277 (2012), 67–83 | DOI | MR | Zbl

[2] M. I. Zelikin, D. D. Kiselev, L. V. Lokutsievskii, “Optimal control and Galois theory”, Sb. Math., 204:11 (2013), 1624–1638 | DOI | DOI | MR | Zbl

[3] D. D. Kiselev, “On a dense winding of the 2-dimensional torus”, Sb. Math., 207:4 (2016), 581–589 | DOI | DOI | MR | Zbl

[4] R. J. McIntosh, E. L. Roettger, “A search for Fibonacci–Wieferich and Wolstenholme primes”, Math. Comp., 76:260 (2007), 2087–2094 | DOI | MR | Zbl

[5] Jianqiang Zhao, “Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem”, J. Number Theory, 123:1 (2007), 18–26 | DOI | MR | Zbl

[6] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl

[7] D. A. Suprunenko, Gruppy podstanovok, Nauka i tekhnika, Minsk, 1996, 366 pp.