Mots-clés : Galois group
@article{SM_2018_209_6_a3,
author = {D. D. Kiselev},
title = {Galois theory, the classification of finite simple groups and a~dense winding of a~torus},
journal = {Sbornik. Mathematics},
pages = {840--849},
year = {2018},
volume = {209},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a3/}
}
D. D. Kiselev. Galois theory, the classification of finite simple groups and a dense winding of a torus. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 840-849. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a3/
[1] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277 (2012), 67–83 | DOI | MR | Zbl
[2] M. I. Zelikin, D. D. Kiselev, L. V. Lokutsievskii, “Optimal control and Galois theory”, Sb. Math., 204:11 (2013), 1624–1638 | DOI | DOI | MR | Zbl
[3] D. D. Kiselev, “On a dense winding of the 2-dimensional torus”, Sb. Math., 207:4 (2016), 581–589 | DOI | DOI | MR | Zbl
[4] R. J. McIntosh, E. L. Roettger, “A search for Fibonacci–Wieferich and Wolstenholme primes”, Math. Comp., 76:260 (2007), 2087–2094 | DOI | MR | Zbl
[5] Jianqiang Zhao, “Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem”, J. Number Theory, 123:1 (2007), 18–26 | DOI | MR | Zbl
[6] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl
[7] D. A. Suprunenko, Gruppy podstanovok, Nauka i tekhnika, Minsk, 1996, 366 pp.