The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 823-839 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the relationship between the nontangential maximal function of the solution to a Dirichlet problem with an $L_p$-boundary function, $p>1$, for a second-order elliptic equation and the Luzin area integral. The equation is considered in the self-adjoint form without lower-degree terms. The $L_p$-norm of the nontangential maximal function of the solution $u$ is estimated from above and below in terms of the squared $L_2(\partial Q)$-norm of the area integral of $v=|u|^{p/2}$. Here the coefficients of the equation need not be smooth in the domain. Bibliography: 33 titles.
Keywords: Dirichlet problem, nontangential maximal function, Luzin area integral.
Mots-clés : elliptic equation
@article{SM_2018_209_6_a2,
     author = {A. K. Gushchin},
     title = {The {Luzin} area integral and the nontangential maximal function for solutions to a~second-order elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {823--839},
     year = {2018},
     volume = {209},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 823
EP  - 839
VL  - 209
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/
LA  - en
ID  - SM_2018_209_6_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation
%J Sbornik. Mathematics
%D 2018
%P 823-839
%V 209
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/
%G en
%F SM_2018_209_6_a2
A. K. Gushchin. The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 823-839. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/

[1] A. K. Gushchin, “Estimates of the nontangential maximal function for solutions of a second-order elliptic equation”, Dokl. Math., 86:2 (2012), 667–669 | DOI | MR | Zbl

[2] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl

[3] A. K. Gushchin, “Solvability of the Dirichlet problem for a second-order elliptic equation with a boundary function from $L_p$”, Dokl. Math., 83:2 (2011), 219–221 | DOI | MR | Zbl

[4] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[5] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[6] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl

[7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[8] D. L. Burkholder, R. F. Gundy, “Distribution function inequalites for the area integral”, Studia Math., 44:6 (1972), 527–544 | DOI | MR | Zbl

[9] B. E. J. Dahlberg, “Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain”, Studia Math., 67:3 (1980), 297–314 | DOI | MR | Zbl

[10] V. Yu. Shelepov, “On boundary properties of solutions of elliptic equations in multidimensional domains representable by means of the difference of convex functions”, Math. USSR-Sb., 61:2 (1988), 437–460 | DOI | MR | Zbl

[11] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[12] A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl

[13] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[14] L. Carleson, “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76:3 (1962), 547–559 | DOI | MR | Zbl

[15] L. Hörmander, “$L^p$-estimates for (pluri-)subharmonic functions”, Math. Scand., 20 (1967), 65–78 | DOI | MR | Zbl

[16] A. K. Gushchin, V. P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 101–136 | DOI | MR | Zbl

[17] A. K. Gushchin, “V. A. Steklov's work on equations of mathematical physics and development of his results in this field”, Proc. Steklov Inst. Math., 289 (2015), 134–151 | DOI | DOI | MR | Zbl

[18] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl

[19] A. K. Gushchin, V. P. Mikhailov, “On the univalent solvability of nonlocal problems for an elliptic equation”, Dokl. Math., 54:3 (1996), 815–816 | MR | Zbl

[20] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl

[21] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | MR | Zbl

[22] V. Zh. Dumanyan, “On solvability of the Dirichlet problem with the boundary function in $L_2$ for a second-order elliptic equation”, J. Contemp. Math. Anal., 50:4 (2015), 153–166 | DOI | MR | Zbl

[23] L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl

[24] È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40 | DOI | DOI | MR | Zbl

[25] M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity”, Proc. Steklov Inst. Math., 290:1 (2015), 138–142 | DOI | DOI | MR | Zbl

[26] M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668 | DOI | DOI | MR | Zbl

[27] E. De Giorgi, “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43 | MR | Zbl

[28] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80:4 (1958), 931–954 | DOI | MR | Zbl

[29] V. P. Mikhaĭlov, “Dirichlet's problem for a second-order elliptic equation”, Differential Equations, 12:10 (1977), 1320–1329 | MR | Zbl

[30] I. M. Petrushko, “On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl

[31] V. A. Kondrat'ev, J. Kopáček, O. A. Oleĭnik, “On the best Hölder exponents for generalized solutions of the Dirichlet problem for a second order elliptic equation”, Math. USSR-Sb., 59:1 (1988), 113–127 | DOI | MR | Zbl

[32] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[33] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl