The Luzin area integral and the nontangential maximal function for solutions to a~second-order elliptic equation
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 823-839
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the relationship between the nontangential maximal function of the solution to a Dirichlet problem with an $L_p$-boundary function, $p>1$, for a second-order elliptic equation and the Luzin area integral. The equation is considered in the self-adjoint form without lower-degree terms. The $L_p$-norm of the nontangential maximal function of the solution $u$ is estimated from above and below in terms of the squared $L_2(\partial Q)$-norm of the area integral of $v=|u|^{p/2}$. Here the coefficients of the equation need not be smooth in the domain.
Bibliography: 33 titles.
Keywords:
Dirichlet problem, nontangential maximal function, Luzin area integral.
Mots-clés : elliptic equation
Mots-clés : elliptic equation
@article{SM_2018_209_6_a2,
author = {A. K. Gushchin},
title = {The {Luzin} area integral and the nontangential maximal function for solutions to a~second-order elliptic equation},
journal = {Sbornik. Mathematics},
pages = {823--839},
publisher = {mathdoc},
volume = {209},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/}
}
TY - JOUR AU - A. K. Gushchin TI - The Luzin area integral and the nontangential maximal function for solutions to a~second-order elliptic equation JO - Sbornik. Mathematics PY - 2018 SP - 823 EP - 839 VL - 209 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/ LA - en ID - SM_2018_209_6_a2 ER -
A. K. Gushchin. The Luzin area integral and the nontangential maximal function for solutions to a~second-order elliptic equation. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 823-839. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a2/