Uniqueness theorems for Franklin series converging to integrable functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 802-822
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following results are proved: a) if a Franklin series converges everywhere to a finite integrable function, then it is the Fourier-Franklin series of this function; b) if a Franklin series converges to a finite integrable function everywhere except possibly at points in some countable set and if all its coefficients satisfy a certain necessary condition, then it is the Fourier-Franklin series of this function.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Franklin system, de la Vallée Poussin theorem, uniqueness theorem.
                    
                    
                    
                  
                
                
                @article{SM_2018_209_6_a1,
     author = {G. G. Gevorkyan},
     title = {Uniqueness theorems for {Franklin} series converging to integrable functions},
     journal = {Sbornik. Mathematics},
     pages = {802--822},
     publisher = {mathdoc},
     volume = {209},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a1/}
}
                      
                      
                    G. G. Gevorkyan. Uniqueness theorems for Franklin series converging to integrable functions. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 802-822. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a1/
