Uniqueness theorems for Franklin series converging to integrable functions
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 802-822

Voir la notice de l'article provenant de la source Math-Net.Ru

The following results are proved: a) if a Franklin series converges everywhere to a finite integrable function, then it is the Fourier-Franklin series of this function; b) if a Franklin series converges to a finite integrable function everywhere except possibly at points in some countable set and if all its coefficients satisfy a certain necessary condition, then it is the Fourier-Franklin series of this function. Bibliography: 16 titles.
Keywords: Franklin system, de la Vallée Poussin theorem, uniqueness theorem.
@article{SM_2018_209_6_a1,
     author = {G. G. Gevorkyan},
     title = {Uniqueness theorems for {Franklin} series converging to integrable functions},
     journal = {Sbornik. Mathematics},
     pages = {802--822},
     publisher = {mathdoc},
     volume = {209},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Uniqueness theorems for Franklin series converging to integrable functions
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 802
EP  - 822
VL  - 209
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a1/
LA  - en
ID  - SM_2018_209_6_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Uniqueness theorems for Franklin series converging to integrable functions
%J Sbornik. Mathematics
%D 2018
%P 802-822
%V 209
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a1/
%G en
%F SM_2018_209_6_a1
G. G. Gevorkyan. Uniqueness theorems for Franklin series converging to integrable functions. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 802-822. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a1/