Aizerman's problem in absolute stability theory for regulated systems
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 780-801 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method for investigating the absolute stability of regulated systems with limited resources is proposed. It is based on estimating improper integrals along the solution of the system. A nonsingular transformation is obtained which allows information about the nonlinearity properties to be taken into account. A class of regulated systems is distinguished for which Aizerman's problem is solvable. For this class a necessary and a sufficient condition for absolute stability are found. The proposed method for investigating absolute stability differs from the other available methods by the fact that conditions for absolute stability are derived without using the Lyapunov function and the frequency theorem. For systems with limited resources the phase variables are bounded, uniformly continuous functions. These properties were used in deriving a condition for stability and in estimating improper integrals. The estimate obtained allows the domain of absolute stability in the space of constructive parameters of the system to be greatly extended by comparison with the earlier known results, and in a number of cases a necessary and a sufficient condition for absolute stability can be obtained. Bibliography: 15 titles.
Keywords: nonsingular transformation, absolute stability, improper integrals, Aizerman's problem, properties of solutions.
@article{SM_2018_209_6_a0,
     author = {S. A. Aisagaliev},
     title = {Aizerman's problem in absolute stability theory for regulated systems},
     journal = {Sbornik. Mathematics},
     pages = {780--801},
     year = {2018},
     volume = {209},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a0/}
}
TY  - JOUR
AU  - S. A. Aisagaliev
TI  - Aizerman's problem in absolute stability theory for regulated systems
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 780
EP  - 801
VL  - 209
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a0/
LA  - en
ID  - SM_2018_209_6_a0
ER  - 
%0 Journal Article
%A S. A. Aisagaliev
%T Aizerman's problem in absolute stability theory for regulated systems
%J Sbornik. Mathematics
%D 2018
%P 780-801
%V 209
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a0/
%G en
%F SM_2018_209_6_a0
S. A. Aisagaliev. Aizerman's problem in absolute stability theory for regulated systems. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 780-801. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a0/

[1] A. I. Lur'e, Einige nichtlineare Probleme aus der Theorie der selbsttätigen Regelung, Akademie-Verlag, Berlin, 1957, xi+167 pp. | MR | Zbl | Zbl

[2] M. A. Aizerman, F. R. Gantmacher, Absolute stability of regulator systems, Holden-Day, Inc., San Francisco, CA–London–Amsterdam, 1964, viii+172 pp. | MR | Zbl | Zbl

[3] A. Kh. Gelig, G. A. Leonov, V. A. Yakubovich, Ustoichivost nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya, Nauka, M., 1978, 400 pp. | MR | Zbl

[4] S. A. Aysagaliyev, “Determination of the region of absolute stability of forced motions in nonlinear systems”, Engrg. Cybernetics, 1969:5 (1970), 148–151 | MR

[5] S. A. Aĭsagaliev, “Determination of the domain of absolute stability of control systems with several nonlinear elements”, Autom. Remote Control, 1970, no. 12, 2049–2052 | MR | Zbl

[6] S. A. Aisagaliev, “Absolute stability in controlled systems”, Differ. Equ., 30:5 (1994), 687–695 | MR | Zbl

[7] S. A. Aisagaliev, Sh. A. Aipanov, “A remark on the global asymptotic stability theory of phase systems”, Differ. Equ., 35:8 (1999), 1019–1026 | MR | Zbl

[8] S. A. Aisagaliev, Problemy kachestvennoi teorii differentsialnykh uravnenii, Kazak universiteti, Almaty, 2016, 397 pp.

[9] S. A. Aisagaliev, M. N. Kalimoldayev, “Certain problems of synchronization theory”, J. Inverse Ill-Posed Probl., 21:1 (2013), 159–175 | DOI | MR | Zbl

[10] M. A. Aizerman, “Ob odnoi probleme, kasayuscheisya ustoichivosti v “bolshom” dinamicheskikh sistem”, UMN, 4:4(32) (1949), 187–188 | MR | Zbl

[11] V. A. Pliss, “O probleme Aizermana dlya sluchaya sistemy trekh differentsialnykh uravnenii”, Dokl. AN SSSR, 121:3 (1958), 422–425 | MR | Zbl

[12] V. I. Zubov, Lektsii po teorii upravleniya, Nauka, M., 1975, 495 pp. | MR | Zbl

[13] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl

[14] V. M. Popov, Hiperstabilitatea sistemelor automate, Editura Academiei Republicii Socialiste România, Bucuresti, 1966, 304 pp. | MR | MR | Zbl | Zbl

[15] V. M. Popov, “Absolute stability of nonlinear systems of automatic control”, Automat. Remote Control, 22 (1961), 857–875 | MR | Zbl