Mots-clés : Lebesgue points
@article{SM_2018_209_5_a6,
author = {R. M. Trigub},
title = {The {Fourier} transform of bivariate functions that depend only on the maximum of the absolute values of their variables},
journal = {Sbornik. Mathematics},
pages = {759--779},
year = {2018},
volume = {209},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a6/}
}
TY - JOUR AU - R. M. Trigub TI - The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables JO - Sbornik. Mathematics PY - 2018 SP - 759 EP - 779 VL - 209 IS - 5 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a6/ LA - en ID - SM_2018_209_5_a6 ER -
R. M. Trigub. The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 759-779. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a6/
[1] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl | Zbl
[2] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl
[3] R. M. Trigub, “Almost everywhere summability of Fourier series with indication of the set of convergence”, Math. Notes, 100:1 (2016), 139–153 | DOI | DOI | MR | Zbl
[4] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004, xiv+585 pp. | DOI | MR | Zbl
[5] R. M. Trigub, “On Fourier multipliers and absolute convergence of Fourier integrals of radial functions”, Ukrainian Math. J., 62:9 (2010), 1487–1501 | DOI | Zbl
[6] A. Beurling, “On the spectral synthesis of bounded functions”, Acta Math., 81 (1949), 225–238 | DOI | MR | Zbl
[7] E. S. Belinskii, E. R. Liflyand, R. M. Trigub, “The Banach algebra $A^*$ and its properties”, J. Fourier Anal. Appl., 3:2 (1997), 103–129 | DOI | MR | Zbl
[8] E. Liflyand, R. Trigub, “Conditions for the absolute convergence of Fourier integrals”, J. Approx. Theory, 163:4 (2011), 438–459 | DOI | MR | Zbl
[9] A. N. Podkorytov, “Summation of multiple Fourier series over polyhedra”, Vestn. Leningr. Univ. Math., 13 (1981), 69–77 | MR | Zbl
[10] R. M. Trigub, “Integriruemost i asimptoticheskoe povedenie preobrazovaniya Fure radialnoi funktsii”, Metricheskie voprosy teorii funktsii i otobrazhenii, Naukova dumka, Kiev, 1977, 142–163 | MR | Zbl
[11] Yu. G. Kuritsyn, “Multivariate versions and two problems of Schoenberg”, J. Soviet Math., 59:4 (1992), 939–945 | DOI | MR | Zbl
[12] H. Berens, Yuan Xu, “$l-1$ summability for multiple Fourier integrals and positivity”, Math. Proc. Cambridge Philos. Soc., 122:1 (1997), 149–172 | DOI | MR | Zbl
[13] V. P. Zastavnyi, “On positive definiteness of some functions”, J. Multivariate Anal., 73:1 (2000), 55–81 | DOI | MR | Zbl
[14] T. Gneiting, “Criteria of Pólya type for radial positive definite functions”, Proc. Amer. Math. Soc., 129:8 (2001), 2309–2318 | DOI | MR | Zbl
[15] M. D. Buhmann, “A new class of radial basis functions with compact support”, Math. Comp., 70:233 (2001), 307–318 | DOI | MR | Zbl
[16] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956, vi+108 pp. | MR | Zbl | Zbl
[17] L. V. Zhizhiashvili, “On the summation of double Fourier series”, Siberian Math. J., 8:3 (1967), 402–414 | DOI | MR | Zbl
[18] M. A. Skopina, “On almost everywhere convergence of Marcinkiewicz sums of double Fourier series”, J. Math. Sci. (N. Y.), 71:1 (1994), 2263–2268 | DOI | MR | Zbl
[19] F. Weisz, “Strong summability of Fourier transforms at Lebesque points and Wiener amalgam spaces”, J. Funct. Spaces, 2015 (2015), 420750, 10 pp. | DOI | MR | Zbl
[20] R. M. Trigub, “Summability of trigonometric Fourier series at $d$-points and a generalization of the Abel–Poisson method”, Izv. Math., 79:4 (2015), 838–858 | DOI | DOI | MR | Zbl