Graph-manifolds and integrable Hamiltonian systems
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 739-758

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topology of the three-dimensional constant-energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called ‘molecules’. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants. A connection between the torsion of a constant-energy manifold and stable periodic trajectories is found. Bibliography: 17 titles.
Keywords: Waldhausen graph-manifold, marked molecules, Hamiltonian systems.
Mots-clés : Reidemeister torsion, Fomenko-Zieschang invariants
@article{SM_2018_209_5_a5,
     author = {K. I. Solodskikh},
     title = {Graph-manifolds and integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {739--758},
     publisher = {mathdoc},
     volume = {209},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/}
}
TY  - JOUR
AU  - K. I. Solodskikh
TI  - Graph-manifolds and integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 739
EP  - 758
VL  - 209
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/
LA  - en
ID  - SM_2018_209_5_a5
ER  - 
%0 Journal Article
%A K. I. Solodskikh
%T Graph-manifolds and integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 2018
%P 739-758
%V 209
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/
%G en
%F SM_2018_209_5_a5
K. I. Solodskikh. Graph-manifolds and integrable Hamiltonian systems. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 739-758. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/