Graph-manifolds and integrable Hamiltonian systems
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 739-758
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the topology of the three-dimensional constant-energy manifolds of
integrable Hamiltonian systems realizable in the form of a special class of
so-called ‘molecules’. Namely, for this class of manifolds the Reidemeister
torsion is calculated in terms of the Fomenko-Zieschang invariants.
A connection between the torsion of a constant-energy manifold and stable
periodic trajectories is found.
Bibliography: 17 titles.
Keywords:
Waldhausen graph-manifold, marked molecules, Hamiltonian
systems.
Mots-clés : Reidemeister torsion, Fomenko-Zieschang invariants
Mots-clés : Reidemeister torsion, Fomenko-Zieschang invariants
@article{SM_2018_209_5_a5,
author = {K. I. Solodskikh},
title = {Graph-manifolds and integrable {Hamiltonian} systems},
journal = {Sbornik. Mathematics},
pages = {739--758},
publisher = {mathdoc},
volume = {209},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/}
}
K. I. Solodskikh. Graph-manifolds and integrable Hamiltonian systems. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 739-758. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/