Graph-manifolds and integrable Hamiltonian systems
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 739-758
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the topology of the three-dimensional constant-energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called ‘molecules’. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants. A connection between the torsion of a constant-energy manifold and stable periodic trajectories is found. Bibliography: 17 titles.
Keywords: Waldhausen graph-manifold, marked molecules, Hamiltonian systems.
Mots-clés : Reidemeister torsion, Fomenko-Zieschang invariants
@article{SM_2018_209_5_a5,
     author = {K. I. Solodskikh},
     title = {Graph-manifolds and integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {739--758},
     year = {2018},
     volume = {209},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/}
}
TY  - JOUR
AU  - K. I. Solodskikh
TI  - Graph-manifolds and integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 739
EP  - 758
VL  - 209
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/
LA  - en
ID  - SM_2018_209_5_a5
ER  - 
%0 Journal Article
%A K. I. Solodskikh
%T Graph-manifolds and integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 2018
%P 739-758
%V 209
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/
%G en
%F SM_2018_209_5_a5
K. I. Solodskikh. Graph-manifolds and integrable Hamiltonian systems. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 739-758. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a5/

[1] F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I”, Invent. Math., 3:4 (1967), 308–333 | DOI | MR | Zbl

[2] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[3] A. T. Fomenko, S. V. Matveev, Algorithmic and computer methods for three-manifolds, Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | DOI | MR | MR | Zbl | Zbl

[4] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[5] A. T. Fomenko, H. Zieschang, “On the topology of three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl

[6] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[7] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[8] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[9] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[10] A. T. Fomenko, S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[11] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[12] V. Turaev, Introduction to combinatorial torsions, Notes taken by F. Schlenk, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2001, viii+123 pp. | DOI | MR | Zbl

[13] M. M. Cohen, A course in simple-homotopy theory, Grad. Texts in Math., 10, Springer-Verlag, New York–Berlin, 1973, x+144 pp. | DOI | MR | Zbl

[14] M. Jankins, W. D. Neumann, Lectures on Seifert manifolds, Brandeis Lecture Notes, 2, Brandeis Univ., Waltham, MA, 1983, i+84+27 pp. | MR

[15] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl

[16] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[17] P. I. Topalov, “Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion”, Sb. Math., 187:3 (1996), 451–468 | DOI | DOI | MR | Zbl