Mots-clés : anisotropic parabolic equation, existence of a solution.
@article{SM_2018_209_5_a4,
author = {F. Kh. Mukminov},
title = {Existence of a~renormalized solution to an anisotropic parabolic problem with},
journal = {Sbornik. Mathematics},
pages = {714--738},
year = {2018},
volume = {209},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/}
}
F. Kh. Mukminov. Existence of a renormalized solution to an anisotropic parabolic problem with. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 714-738. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/
[1] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl
[2] F. Kh. Mukminov, E. R. Andriyanova, “Suschestvovanie slabogo resheniya elliptiko-parabolicheskogo uravneniya s peremennym poryadkom nelineinosti”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 139, VINITI RAN, M., 2017, 44–58
[3] R. J. DiPerna, P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 321–366 | DOI | MR | Zbl
[4] P. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[5] D. Blanchard, F. Murat, “Renormalised solutions of nonlinear parabolic problems with $L^1$ data: existence and uniqueness”, Proc. Roy. Soc. Edinburgh Sect. A, 127:6 (1997), 1137–1152 | DOI | MR | Zbl
[6] A. Prignet, “Existence and uniqueness of “entropy” solutions of parabolic problems with $L^1$ data”, Nonlinear Anal., 28:12 (1997), 1943–1954 | DOI | MR | Zbl
[7] K. Ammar, P. Wittbold, “Existence of renormalized solutions of degenerate elliptic-parabolic problems”, Proc. Roy. Soc. Edinburgh Sect. A, 133:3 (2003), 477–496 | DOI | MR | Zbl
[8] J. Carrillo, P. Wittbold, “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems”, J. Differential Equations, 156:1 (1999), 93–121 | DOI | MR | Zbl
[9] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl
[10] Chao Zhang, Shulin Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data”, J. Differential Equations, 248:6 (2010), 1376–1400 | DOI | MR | Zbl
[11] H. Redwane, “Existence results for a class of nonlinear parabolic equations in Orlicz spaces”, Electron. J. Qual. Theory Differ. Equ., 2010, 2, 19 pp. | MR | Zbl
[12] P. Gwiazda, P. Wittbold, A. Wróblewska-Kamińskac, A. Zimmermann, “Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces”, Nonlinear Anal., 129 (2015), 1–36 | DOI | MR | Zbl
[13] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl
[14] L. M. Kozhevnikova, A. A. Khadzhi, “Resheniya ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2013, no. 1(30), 90–96 | DOI
[15] L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl
[16] R. Kh. Karimov, L. M. Kozhevnikova, A. A. Khadzhi, “Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains”, Ufa Math. J., 8:3 (2016), 95–108 | DOI | MR
[17] L. M. Kozhevnikova, “On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces”, Comput. Math. Math. Phys., 57:3 (2017), 434–452 | DOI | DOI | MR | Zbl
[18] Yu. A. Alkhutov, V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Sb. Math., 205:3 (2014), 307–318 | DOI | DOI | MR | Zbl
[19] F. Otto, “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differential Equations, 131:1 (1996), 20–38 | DOI | MR | Zbl
[20] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[21] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl
[22] J. Leray, J.-L. Lions, “Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty–Browder”, Bull. Soc. Math. France, 93 (1965), 97–107 | DOI | MR | Zbl
[23] G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double non-linearity”, Sb. Math., 188:9 (1997), 1343–1370 | DOI | DOI | MR | Zbl
[24] E. Azroul, H. Redwane, M. Rhoudaf, “Existence of solutions for nonlinear parabolic systems via weak convergence of truncations”, Electron. J. Differential Equations, 2010 (2010), 68, 18 pp. | MR | Zbl
[25] E. Hewitt, K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Grad. Texts in Math., 25, 3rd printing, Springer-Verlag, New York–Heidelberg, 1975, x+476 pp. | MR | Zbl
[26] R. Landes, “On the existence of weak solutions for quasilinear parabolic initial-boundary value problems”, Proc. Roy. Soc. Edinburgh Sect. A, 89:3-4 (1981), 217–237 | DOI | MR | Zbl