Existence of a~renormalized solution to an anisotropic parabolic problem with
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 714-738

Voir la notice de l'article provenant de la source Math-Net.Ru

The first boundary value problem is considered for a certain class of anisotropic parabolic equations with variable nonlinearity exponents in a cylindrical domain $( 0,T)\times\Omega$, where $\Omega$ is a bounded domain. The parabolic term in the equation has the form $(\beta(x,u))_t$ and is determined by the function $\beta(x,r)\in L_1(\Omega)$, where $r\in \mathbb R$, which only satisfies the Carathéodory condition and is increasing in $r$. The existence of a weak and a renormalized solution is proved. Bibliography: 26 titles.
Keywords: renormalized solution, variable nonlinearity exponents, existence of a solution.
Mots-clés : anisotropic parabolic equation
@article{SM_2018_209_5_a4,
     author = {F. Kh. Mukminov},
     title = {Existence of a~renormalized solution to an anisotropic parabolic problem with},
     journal = {Sbornik. Mathematics},
     pages = {714--738},
     publisher = {mathdoc},
     volume = {209},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Existence of a~renormalized solution to an anisotropic parabolic problem with
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 714
EP  - 738
VL  - 209
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/
LA  - en
ID  - SM_2018_209_5_a4
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Existence of a~renormalized solution to an anisotropic parabolic problem with
%J Sbornik. Mathematics
%D 2018
%P 714-738
%V 209
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/
%G en
%F SM_2018_209_5_a4
F. Kh. Mukminov. Existence of a~renormalized solution to an anisotropic parabolic problem with. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 714-738. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/