Existence of a~renormalized solution to an anisotropic parabolic problem with
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 714-738
Voir la notice de l'article provenant de la source Math-Net.Ru
The first boundary value problem is considered for a certain class of anisotropic
parabolic equations with variable nonlinearity exponents in a cylindrical domain $( 0,T)\times\Omega$, where $\Omega$ is a bounded domain. The parabolic
term in the equation has the form $(\beta(x,u))_t$ and is determined by the function
$\beta(x,r)\in L_1(\Omega)$, where $r\in \mathbb R$, which only satisfies the Carathéodory condition and is increasing in $r$. The existence of a weak and a renormalized solution is proved.
Bibliography: 26 titles.
Keywords:
renormalized solution, variable nonlinearity exponents,
existence of a solution.
Mots-clés : anisotropic parabolic equation
Mots-clés : anisotropic parabolic equation
@article{SM_2018_209_5_a4,
author = {F. Kh. Mukminov},
title = {Existence of a~renormalized solution to an anisotropic parabolic problem with},
journal = {Sbornik. Mathematics},
pages = {714--738},
publisher = {mathdoc},
volume = {209},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/}
}
F. Kh. Mukminov. Existence of a~renormalized solution to an anisotropic parabolic problem with. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 714-738. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a4/