Special weak limits and simple spectrum of the
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 660-671 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example of a measure-preserving flow $T_t$ for which the tensor product $T_t\otimes T_{\alpha t}$ has simple spectrum for all $\alpha > 1$ is constructed. The construction of the flow uses asymptotically infinitesimal spacers and spacers obtained using results in finite field theory. For the spectral measure $\sigma$ of a flow of this type, any nonorthogonal projection of the measure $\sigma\times\sigma$ onto the diagonal in $\mathbb R\times \mathbb R$ is a 1-1 mapping $(\operatorname{mod} 0)$ with respect to the measure $\sigma\times\sigma$. Bibliography: 12 titles.
Keywords: ergodic flow, lacunar rigidity, Galois fields, special weak limits, simple spectrum, tensor product.
@article{SM_2018_209_5_a2,
     author = {M. S. Lobanov and V. V. Ryzhikov},
     title = {Special weak limits and simple spectrum of the},
     journal = {Sbornik. Mathematics},
     pages = {660--671},
     year = {2018},
     volume = {209},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/}
}
TY  - JOUR
AU  - M. S. Lobanov
AU  - V. V. Ryzhikov
TI  - Special weak limits and simple spectrum of the
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 660
EP  - 671
VL  - 209
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/
LA  - en
ID  - SM_2018_209_5_a2
ER  - 
%0 Journal Article
%A M. S. Lobanov
%A V. V. Ryzhikov
%T Special weak limits and simple spectrum of the
%J Sbornik. Mathematics
%D 2018
%P 660-671
%V 209
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/
%G en
%F SM_2018_209_5_a2
M. S. Lobanov; V. V. Ryzhikov. Special weak limits and simple spectrum of the. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 660-671. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/

[1] A. Katok, Combinatorial constructions in ergodic theory and dynamics, Univ. Lecture Ser., 30, Amer. Math. Soc., Providence, RI, 2003, iv+121 pp. | DOI | MR | Zbl

[2] V. I. Oseledets, “An automorphism with simple, continuous spectrum not having the group property”, Math. Notes, 5:3 (1969), 196–198 | DOI | MR | Zbl

[3] A. M. Stepin, “Spectral properties of generic dynamical systems”, Math. USSR-Izv., 29:1 (1987), 159–192 | DOI | MR | Zbl

[4] V. V. Ryzhikov, “Simple spectrum of the tensor product of powers of a mixing automorphism”, Trans. Moscow Math. Soc., 73 (2012), 183–191 | DOI | MR | Zbl

[5] V. V. Ryzhikov, “Bounded ergodic constructions, disjointness, and weak limits of powers”, Trans. Moscow Math. Soc., 74 (2013), 165–171 | DOI | MR | Zbl

[6] E. B. Vinberg, A course in algebra, Grad. Stud. Math., 56, Amer. Math. Soc., Providence, RI, 2003, x+511 pp. | DOI | MR | Zbl

[7] K. Chandrasekharan, Introduction to analytic number theory, Grundlehren Math. Wiss., 148, Springer-Verlag New York Inc., New York, 1968, viii+140 pp. | DOI | MR | MR | Zbl

[8] V. V. Ryzhikov, On mixing constructions with algebraic spacers, arXiv: 1108.1508

[9] O. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl

[10] S. V. Tikhonov, “Mixing transformations with homogeneous spectrum”, Sb. Math., 202:8 (2011), 1231–1252 | DOI | DOI | MR | Zbl

[11] D. S. Ornstein, “On the root problem in ergodic theory”, Proceedings of the sixth Berkeley symposium on mathematical statistics and probability (Univ. California, Berkeley, Calif., 1970/1971), v. II, Probability theory, Berkeley, Calif., Univ. California Press, 1972, 347–356 | MR | Zbl

[12] V. V. Ryzhikov, “Ergodic homoclinic groups, Sidon constructions and Poisson suspensions”, Trans. Moscow Math. Soc., 75 (2014), 77–85 | DOI | MR | Zbl