Special weak limits and simple spectrum of the
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 660-671

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of a measure-preserving flow $T_t$ for which the tensor product $T_t\otimes T_{\alpha t}$ has simple spectrum for all $\alpha > 1$ is constructed. The construction of the flow uses asymptotically infinitesimal spacers and spacers obtained using results in finite field theory. For the spectral measure $\sigma$ of a flow of this type, any nonorthogonal projection of the measure $\sigma\times\sigma$ onto the diagonal in $\mathbb R\times \mathbb R$ is a 1-1 mapping $(\operatorname{mod} 0)$ with respect to the measure $\sigma\times\sigma$. Bibliography: 12 titles.
Keywords: ergodic flow, lacunar rigidity, Galois fields, special weak limits, simple spectrum, tensor product.
@article{SM_2018_209_5_a2,
     author = {M. S. Lobanov and V. V. Ryzhikov},
     title = {Special weak limits and simple spectrum of the},
     journal = {Sbornik. Mathematics},
     pages = {660--671},
     publisher = {mathdoc},
     volume = {209},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/}
}
TY  - JOUR
AU  - M. S. Lobanov
AU  - V. V. Ryzhikov
TI  - Special weak limits and simple spectrum of the
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 660
EP  - 671
VL  - 209
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/
LA  - en
ID  - SM_2018_209_5_a2
ER  - 
%0 Journal Article
%A M. S. Lobanov
%A V. V. Ryzhikov
%T Special weak limits and simple spectrum of the
%J Sbornik. Mathematics
%D 2018
%P 660-671
%V 209
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/
%G en
%F SM_2018_209_5_a2
M. S. Lobanov; V. V. Ryzhikov. Special weak limits and simple spectrum of the. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 660-671. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a2/