New estimate for a Kloosterman sum with primes for a composite modulus
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 652-659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary composite modulus $q$ a bound is obtained for a short Kloosterman sum with primes whose length exceeds $q^{7/10+\varepsilon}$. This bound improves the previous result by Fouvry and Shparlinski, which holds for sums of length at least $q^{3/4+\varepsilon}$. Bibliography: 23 titles.
Keywords: Kloosterman sums, reciprocals for a given modulus, prime numbers
Mots-clés : composite moduli.
@article{SM_2018_209_5_a1,
     author = {M. A. Korolev},
     title = {New estimate for {a~Kloosterman} sum with primes for a~composite modulus},
     journal = {Sbornik. Mathematics},
     pages = {652--659},
     year = {2018},
     volume = {209},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - New estimate for a Kloosterman sum with primes for a composite modulus
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 652
EP  - 659
VL  - 209
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/
LA  - en
ID  - SM_2018_209_5_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T New estimate for a Kloosterman sum with primes for a composite modulus
%J Sbornik. Mathematics
%D 2018
%P 652-659
%V 209
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/
%G en
%F SM_2018_209_5_a1
M. A. Korolev. New estimate for a Kloosterman sum with primes for a composite modulus. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 652-659. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/

[1] M. A. Korolev, “Karatsuba's method for estimating Kloosterman sums”, Sb. Math., 207:8 (2016), 1142–1158 | DOI | DOI | MR | Zbl

[2] M. A. Korolev, “On short Kloosterman sums modulo a prime”, Math. Notes, 100:6 (2016), 820–827 | DOI | DOI | MR | Zbl

[3] M. A. Korolev, “Short Kloosterman sums to powerful modulus”, Dokl. Math., 94:2 (2016), 561–562 | DOI | DOI | MR | Zbl

[4] M. A. Korolev, “Metody otsenok korotkikh summ Kloostermana”, Chebyshevskii sb., 17:4 (2016), 79–109 | MR | Zbl

[5] M. A. Korolev, “O nelineinoi summe Kloostermana”, Chebyshevskii sb., 17:1 (2016), 140–147 | MR

[6] M. A. Korolev, “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | DOI | MR | Zbl

[7] M. A. Korolev, “On a Diophantine inequality with reciprocals”, Proc. Steklov Inst. Math., 299 (2017), 132–142 | DOI | DOI | MR

[8] M. A. Korolev, “Elementarnoe dokazatelstvo otsenki summy Kloostermana s prostymi chislami”, Matem. zametki, 103:5 (2018), 720–729

[9] M. A. Korolev, “On Kloosterman sums with multiplicative coefficients”, Izv. Math., 82 (2018) | DOI

[10] S. V. Konyagin, M. A. Korolev, “On a symmetric Diophantine equation with reciprocals”, Proc. Steklov Inst. Math., 294 (2016), 67–77 | DOI | DOI | MR | Zbl

[11] S. V. Konyagin, M. A. Korolev, “Irreducible solutions of an equation involving reciprocals”, Sb. Math., 208:12 (2017), 1818–1834 | DOI | DOI | MR

[12] J. B. Friedlander, P. Kurlberg, I. E. Shparlinski, “Products in residue classes”, Math. Res. Lett., 15:6 (2008), 1133–1147 | DOI | MR | Zbl

[13] M. Z. Garaev, “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | DOI | MR | Zbl

[14] É. Fouvry, I. E. Shparlinski, “On a ternary quadratic form over primes”, Acta Arith., 150:3 (2011), 285–314 | DOI | MR | Zbl

[15] E. Fouvry, Ph. Michel, “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. Sci. École Norm. Sup. (4), 31:1 (1998), 93–130 | DOI | MR | Zbl

[16] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[17] R. C. Baker, “Kloosterman sum with prime variable”, Acta Arith., 156:4 (2012), 351–372 | DOI | MR | Zbl

[18] I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954, viii+227 pp. | MR | MR | Zbl | Zbl

[19] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59:5 (1995), 971–981 | DOI | MR | Zbl

[20] D. R. Heath-Brown, “Almost-primes in arithmetic progressions and short intervals”, Math. Proc. Cambridge Philos. Soc., 83:3 (1978), 357–375 | DOI | MR | Zbl

[21] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992, xii+396 pp. | DOI | MR | MR | Zbl | Zbl

[22] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207 | MR | Zbl

[23] T. Estermann, “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl