New estimate for a~Kloosterman sum with primes for a~composite modulus
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 652-659
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary composite modulus $q$ a bound is obtained for a short Kloosterman sum with primes whose length exceeds $q^{7/10+\varepsilon}$.
This bound improves the previous result by Fouvry and Shparlinski,
which holds for sums of length at least $q^{3/4+\varepsilon}$.
Bibliography: 23 titles.
Keywords:
Kloosterman sums, reciprocals for a given modulus, prime numbers
Mots-clés : composite moduli.
Mots-clés : composite moduli.
@article{SM_2018_209_5_a1,
author = {M. A. Korolev},
title = {New estimate for {a~Kloosterman} sum with primes for a~composite modulus},
journal = {Sbornik. Mathematics},
pages = {652--659},
publisher = {mathdoc},
volume = {209},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/}
}
M. A. Korolev. New estimate for a~Kloosterman sum with primes for a~composite modulus. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 652-659. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/