New estimate for a~Kloosterman sum with primes for a~composite modulus
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 652-659

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary composite modulus $q$ a bound is obtained for a short Kloosterman sum with primes whose length exceeds $q^{7/10+\varepsilon}$. This bound improves the previous result by Fouvry and Shparlinski, which holds for sums of length at least $q^{3/4+\varepsilon}$. Bibliography: 23 titles.
Keywords: Kloosterman sums, reciprocals for a given modulus, prime numbers
Mots-clés : composite moduli.
@article{SM_2018_209_5_a1,
     author = {M. A. Korolev},
     title = {New estimate for {a~Kloosterman} sum with primes for a~composite modulus},
     journal = {Sbornik. Mathematics},
     pages = {652--659},
     publisher = {mathdoc},
     volume = {209},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - New estimate for a~Kloosterman sum with primes for a~composite modulus
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 652
EP  - 659
VL  - 209
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/
LA  - en
ID  - SM_2018_209_5_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T New estimate for a~Kloosterman sum with primes for a~composite modulus
%J Sbornik. Mathematics
%D 2018
%P 652-659
%V 209
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/
%G en
%F SM_2018_209_5_a1
M. A. Korolev. New estimate for a~Kloosterman sum with primes for a~composite modulus. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 652-659. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a1/