@article{SM_2018_209_5_a0,
author = {D. P. Il'yutko and E. A. Sevost'yanov},
title = {Boundary behaviour of open discrete mappings on {Riemannian} manifolds},
journal = {Sbornik. Mathematics},
pages = {605--651},
year = {2018},
volume = {209},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a0/}
}
D. P. Il'yutko; E. A. Sevost'yanov. Boundary behaviour of open discrete mappings on Riemannian manifolds. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 605-651. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a0/
[1] Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xv+362 pp. | MR | MR | Zbl | Zbl
[2] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl
[3] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl
[4] V. M. Mikljukov, “Removable singularities of quasi-conformal mappings in space”, Soviet Math. Dokl., 10 (1969), 1153–1155 | MR | Zbl
[5] R. Näkki, “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A I, 484 (1970), 1–50 | MR | Zbl
[6] E. A. Sevost'yanov, R. R. Salimov, E. A. Petrov, “On the removal of singularities of the Orlicz–Sobolev classes”, J. Math. Sci. (N. Y.), 222:6 (2017), 723–740 | DOI | MR | Zbl
[7] E. A. Poleckii, “On the removal of singularities of quasiconformal mappings”, Math. USSR-Sb., 21:2 (1973), 240–254 | DOI | MR | Zbl
[8] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. | DOI | MR | Zbl
[9] B. V. Shabat, “On the theory of quasiconformal mappings in space”, Soviet Math. Dokl., 1 (1960), 730–733 | MR | Zbl
[10] U. Srebro, “Conformal capacity and quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 529 (1973), 1–8 | MR | Zbl
[11] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl
[12] M. Vuorinen, “Exceptional sets and boundary behavior of quasiregular mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 1976, no. 11, 1–44 | MR | Zbl
[13] M. Cristea, “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1-3 (2010), 61–90 | DOI | MR | Zbl
[14] I. Holopainen, P. Pankka, “Mappings of finite distortion: global homeomorphism theorem”, Ann. Acad. Sci. Fenn. Math., 29:1 (2004), 59–80 | MR | Zbl
[15] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2001, xvi+552 pp. | MR | Zbl
[16] P. Koskela, K. Rajala, “Mappings of finite distortion: removable singularities”, Israel J. Math., 136 (2003), 269–283 | DOI | MR | Zbl
[17] K. Rajala, “Mappings of finite distortion: removable singularities for locally homeomorphic mappings”, Proc. Amer. Math. Soc., 132:11 (2004), 3251–3258 | DOI | MR | Zbl
[18] E. S. Afanasieva, V. I. Ryazanov, R. R. Salimov, “On mappings in the Orlicz–Sobolev classes on Riemannian manifolds”, J. Math. Sci. (N. Y.), 181:1 (2012), 1–17 | DOI | MR | Zbl
[19] E. S. Afanas'eva, “Boundary behavior of ring $Q$-homeomorphisms on Riemannian manifolds”, Ukrainian Math. J., 63:10 (2012), 1479–1493 | DOI | MR | Zbl
[20] A. A. Ignat'ev, V. I. Ryazanov, “On the theory of boundary behavior of spatial mappings”, Ukr. Math. Bull., 3:2 (2006), 189–201 | MR | Zbl
[21] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “Toward the theory of Orlicz–Sobolev classes”, St. Petersburg Math. J., 25:6 (2014), 929–963 | DOI | MR | Zbl
[22] E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukrainian Math. J., 62:5 (2010), 785–793 | DOI | MR | Zbl
[23] D. Kovtonyuk, V. Ryazanov, “New modulus estimates in Orlicz–Sobolev classes”, Ann. Univ. Buchar. Math. Ser., 5(LXIII):1 (2014), 131–135 | MR | Zbl
[24] R. R. Salimov, E. A. Sevost'yanov, “The theory of shell-based $Q$-mappings in geometric function theory”, Sb. Math., 201:6 (2010), 909–934 | DOI | DOI | MR | Zbl
[25] D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580 | DOI | DOI | MR | Zbl
[26] E. A. Sevost'yanov, “Local and boundary behavior of maps in metric spaces”, St. Petersburg Math. J., 28:6 (2017), 807–824 | DOI | MR | Zbl
[27] E. A. Sevost'yanov, “Generalization of one Poletskii lemma to classes of space mappings”, Ukrainian Math. J., 61:7 (2009), 1151–1157 | DOI | MR | Zbl
[28] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[29] F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, N.Y., 1969), Ann. of Math. Studies, 66, Princeton Univ. Press, Princeton, N.J., 1971, 175–193 | MR | Zbl
[30] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pp. | DOI | MR | Zbl
[31] T. Adamowicz, N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35:2 (2010), 609–626 | DOI | MR | Zbl
[32] K. Kuratowski, Topology, v. II, New ed., rev. and augm., Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968, xiv+608 pp. | MR | MR
[33] T. Rado, P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp. | MR | Zbl
[34] S. Saks, Theory of the integral, Monogr. Mat., 7, 2nd ed., G. E. Stechert, Warszawa–New York, 1937, vi+347 pp. | MR | Zbl
[35] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | MR | Zbl | Zbl
[36] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl
[37] W. P. Ziemer, “Extremal length and $p$-capacity”, Michigan Math. J., 16 (1969), 43–51 | DOI | MR | Zbl
[38] V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Siberian Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl
[39] W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 pp. | MR | Zbl
[40] C. J. Titus, G. S. Young, “The extension of interiority, with some applications”, Trans. Amer. Math. Soc., 103:2 (1962), 329–340 | DOI | MR | Zbl