Boundary behaviour of open discrete mappings on Riemannian manifolds
Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 605-651
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with problems of continuous extension of certain classes of mappings on Riemannian manifolds to boundary points of a given domain.
In particular, the so-called ring mappings are shown to be continuously extendable to
an isolated boundary point. Analogous theorems are also derived under more general
conditions on the boundaries of the given and the target domains. As an application of the machinery thus developed,
an arbitrary
open discrete boundary-preserving mapping from the Orlicz-Sobolev class is shown to extend continuously to
an isolated boundary point.
Bibliography: 40 titles.
Keywords:
Riemannian manifold, moduli of families of paths and surfaces,
mappings with bounded or finite distortion, local and boundary
behaviour of mappings, Sobolev class, Orlicz-Sobolev class.
@article{SM_2018_209_5_a0,
author = {D. P. Il'yutko and E. A. Sevost'yanov},
title = {Boundary behaviour of open discrete mappings on {Riemannian} manifolds},
journal = {Sbornik. Mathematics},
pages = {605--651},
publisher = {mathdoc},
volume = {209},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_5_a0/}
}
TY - JOUR AU - D. P. Il'yutko AU - E. A. Sevost'yanov TI - Boundary behaviour of open discrete mappings on Riemannian manifolds JO - Sbornik. Mathematics PY - 2018 SP - 605 EP - 651 VL - 209 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_5_a0/ LA - en ID - SM_2018_209_5_a0 ER -
D. P. Il'yutko; E. A. Sevost'yanov. Boundary behaviour of open discrete mappings on Riemannian manifolds. Sbornik. Mathematics, Tome 209 (2018) no. 5, pp. 605-651. http://geodesic.mathdoc.fr/item/SM_2018_209_5_a0/