@article{SM_2018_209_4_a4,
author = {I. G. Tsar'kov},
title = {Continuous selections in asymmetric spaces},
journal = {Sbornik. Mathematics},
pages = {560--579},
year = {2018},
volume = {209},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a4/}
}
I. G. Tsar'kov. Continuous selections in asymmetric spaces. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 560-579. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a4/
[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci. (N. Y.), 217:6 (2016), 683–730 | DOI | MR | Zbl
[2] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl
[3] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[4] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl
[5] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl
[6] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl
[7] I. G. Tsar'kov, “Continuous selection for set-valued mappings”, Izv. Math., 81:3 (2017), 645–669 | DOI | DOI | MR | Zbl
[8] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80
[9] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl
[10] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Sb. Math., 207:2 (2016), 267–285 | DOI | DOI | MR | Zbl
[11] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl
[12] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl
[13] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl
[14] S. Eilenberg, D. Montgomery, “Fixed-point theorems for multi-valued transformations”, Amer. J. Math., 68:2 (1946), 214–222 | DOI | MR | Zbl
[15] Ky Fan, “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126 | MR | Zbl
[16] L. Górniewicz, A. Granas, W. Kryszewski, “On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts”, J. Math. Anal. Appl., 161:2 (1991), 457–473 | DOI | MR | Zbl
[17] V. G. Gutev, “A fixed-point theorem for $UV^n$ usco maps”, Proc. Amer. Math. Soc., 124:3 (1996), 945–952 | DOI | MR | Zbl