Continuous selections in asymmetric spaces
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 560-579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In asymmetric seminormed and semimetric spaces, sets admitting a continuous $\varepsilon$-selection for any $\varepsilon>0$ are studied. A characterization of closed subsets of a complete symmetrizable asymmetric seminormed space admitting a continuous $\varepsilon$-selection for all $\varepsilon>0$ is obtained. Sufficient conditions for the existence of continuous selections in seminormed linear spaces and semimetric semilinear spaces are put forward. Applications to generalized rational functions in the asymmetric space of continuous functions and in the semilinear space $\mathbf{L}_h$ of all boundedly compact convex sets with Hausdorff metric are found. A metric-topological fixed point theorem for a stable set-valued mapping in the space $\mathbf{L}_h$ is obtained. Bibliography: 17 titles.
Keywords: continuous selection, semilinear space, asymmetric spaces, generalized rational function, fixed point.
@article{SM_2018_209_4_a4,
     author = {I. G. Tsar'kov},
     title = {Continuous selections in asymmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {560--579},
     year = {2018},
     volume = {209},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a4/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous selections in asymmetric spaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 560
EP  - 579
VL  - 209
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a4/
LA  - en
ID  - SM_2018_209_4_a4
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous selections in asymmetric spaces
%J Sbornik. Mathematics
%D 2018
%P 560-579
%V 209
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a4/
%G en
%F SM_2018_209_4_a4
I. G. Tsar'kov. Continuous selections in asymmetric spaces. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 560-579. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a4/

[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci. (N. Y.), 217:6 (2016), 683–730 | DOI | MR | Zbl

[2] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[3] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[4] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl

[5] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl

[6] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl

[7] I. G. Tsar'kov, “Continuous selection for set-valued mappings”, Izv. Math., 81:3 (2017), 645–669 | DOI | DOI | MR | Zbl

[8] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80

[9] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl

[10] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Sb. Math., 207:2 (2016), 267–285 | DOI | DOI | MR | Zbl

[11] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[12] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl

[13] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[14] S. Eilenberg, D. Montgomery, “Fixed-point theorems for multi-valued transformations”, Amer. J. Math., 68:2 (1946), 214–222 | DOI | MR | Zbl

[15] Ky Fan, “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126 | MR | Zbl

[16] L. Górniewicz, A. Granas, W. Kryszewski, “On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts”, J. Math. Anal. Appl., 161:2 (1991), 457–473 | DOI | MR | Zbl

[17] V. G. Gutev, “A fixed-point theorem for $UV^n$ usco maps”, Proc. Amer. Math. Soc., 124:3 (1996), 945–952 | DOI | MR | Zbl