On the problem of periodicity of continued fractions in hyperelliptic fields
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 519-559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present new results concerning the problem of periodicity of continued fractions which are expansions of quadratic irrationalities in a field $K((h))$, where $K$ is a field of characteristic different from 2, $h \in K[x]$, $\deg h=1$. Let $f \in K[h]$ be a square-free polynomial and suppose that the valuation $v_h$ of the field $K(x)$ has two extensions $v_h^-$ and $v_h^+$ to the field $L=K(h)(\sqrt{f})$. We set $S_h=\{v_h^-,v_h^+\}$. A deep connection between the periodicity of continued fractions in the field $K((h))$ and the existence of $S_h$-units made it possible to make great advances in the study of periodic and quasiperiodic elements of the field $L$, and also in problems connected with searching for fundamental $S_h$-units. Using a new efficient algorithm to search for solutions of the norm equation in the field $L$ we manage to find examples of periodic continued fractions of elements of the form $\sqrt{f}$, which is a fairly rare phenomenon. For the case of an elliptic field $L=\mathbb{Q}(x)(\sqrt{f})$, $\deg f=3$, we describe all square-free polynomials $f \in \mathbb{Q}[h]$ with a periodic expansion of $\sqrt{f}$ into a continued fraction in the field $\mathbb{Q}((h))$. Bibliography: 16 titles.
Keywords: hyperelliptic fields, continued fractions, periodicity, $S$-units
Mots-clés : problem of torsion in Jacobian.
@article{SM_2018_209_4_a3,
     author = {V. P. Platonov and G. V. Fedorov},
     title = {On the problem of periodicity of continued fractions in hyperelliptic fields},
     journal = {Sbornik. Mathematics},
     pages = {519--559},
     year = {2018},
     volume = {209},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a3/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - G. V. Fedorov
TI  - On the problem of periodicity of continued fractions in hyperelliptic fields
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 519
EP  - 559
VL  - 209
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a3/
LA  - en
ID  - SM_2018_209_4_a3
ER  - 
%0 Journal Article
%A V. P. Platonov
%A G. V. Fedorov
%T On the problem of periodicity of continued fractions in hyperelliptic fields
%J Sbornik. Mathematics
%D 2018
%P 519-559
%V 209
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a3/
%G en
%F SM_2018_209_4_a3
V. P. Platonov; G. V. Fedorov. On the problem of periodicity of continued fractions in hyperelliptic fields. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 519-559. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a3/

[1] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl

[2] W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498 | DOI | MR | Zbl

[3] N. H. Abel, “Ueber die Integration der Differential-Formel $\frac{\rho\,dx }{ \sqrt{R}}$, wenn $R$ und $\rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826:1 (1826), 185–221 | DOI | MR | Zbl

[4] W. M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR | Zbl

[5] V. V. Benyash-Krivets, V. P. Platonov, “Groups of $S$-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl

[6] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | Zbl

[7] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | Zbl

[8] V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | DOI | MR | Zbl

[9] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued rational fractions in hyperelliptic fields and the Mumford representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | DOI | MR | Zbl

[10] V. P. Platonov, M. M. Petrunin, “$S$-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | DOI | MR | Zbl

[11] V. P. Platonov, M. M. Petrunin, “$S$-units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | DOI | DOI | MR | Zbl

[12] M. M. Petrunin, “$S$-units and periodicity of square root in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 222–225 | DOI | DOI | MR | Zbl

[13] B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148 | DOI | MR | Zbl

[14] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl

[15] F. Pappalardi, A. J. van der Poorten, “Pseudo-elliptic integrals, units, and torsion”, J. Aust. Math. Soc., 79:3 (2005), 335–347 | DOI | MR | Zbl

[16] Z. L. Scherr, Rational polynomial pell equations, PhD diss. submitted in partial fulfillment of the requirements, Univ. Michigan, 2013, v+81 pp. https://deepblue.lib.umich.edu/handle/2027.42/100026