Mots-clés : problem of torsion in Jacobian.
@article{SM_2018_209_4_a3,
author = {V. P. Platonov and G. V. Fedorov},
title = {On the problem of periodicity of continued fractions in hyperelliptic fields},
journal = {Sbornik. Mathematics},
pages = {519--559},
year = {2018},
volume = {209},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a3/}
}
V. P. Platonov; G. V. Fedorov. On the problem of periodicity of continued fractions in hyperelliptic fields. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 519-559. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a3/
[1] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl
[2] W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498 | DOI | MR | Zbl
[3] N. H. Abel, “Ueber die Integration der Differential-Formel $\frac{\rho\,dx }{ \sqrt{R}}$, wenn $R$ und $\rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826:1 (1826), 185–221 | DOI | MR | Zbl
[4] W. M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR | Zbl
[5] V. V. Benyash-Krivets, V. P. Platonov, “Groups of $S$-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl
[6] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | Zbl
[7] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | Zbl
[8] V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | DOI | MR | Zbl
[9] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued rational fractions in hyperelliptic fields and the Mumford representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | DOI | MR | Zbl
[10] V. P. Platonov, M. M. Petrunin, “$S$-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | DOI | MR | Zbl
[11] V. P. Platonov, M. M. Petrunin, “$S$-units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | DOI | DOI | MR | Zbl
[12] M. M. Petrunin, “$S$-units and periodicity of square root in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 222–225 | DOI | DOI | MR | Zbl
[13] B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148 | DOI | MR | Zbl
[14] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[15] F. Pappalardi, A. J. van der Poorten, “Pseudo-elliptic integrals, units, and torsion”, J. Aust. Math. Soc., 79:3 (2005), 335–347 | DOI | MR | Zbl
[16] Z. L. Scherr, Rational polynomial pell equations, PhD diss. submitted in partial fulfillment of the requirements, Univ. Michigan, 2013, v+81 pp. https://deepblue.lib.umich.edu/handle/2027.42/100026