Immersions of the circle into a surface
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 503-518 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify immersions $f$ of a circle in a two-dimensional manifold $M$ in terms of elementary invariants: the parity $S(f)$ of the number of double points of a self-transverse $C^1$-approximation of $f$, and the winding number $T(e\overline f)$ of the immersion $e\overline f\colon S^1\to M_f\subset\mathbb R^2$, where $\overline f$ is the lift of $f$ to the cover $M_f$ of $M$ corresponding to the subgroup $\langle[f]\rangle\subset\pi_1(M)$. Namely, immersions $f,g\colon S^1\to M$ are regularly homotopic if and only if they are homotopic and the following additional condition is satisfied: if $M=S^2$, or $M=\mathbb R P^2$, or the normal bundle $\nu(f)$ is nonorientable, then $S(f)=S(g)$; if $M\ne S^2$, $M\ne \mathbb R P^2$ and the bundles $\nu(f)$ and $\nu(g)$ have orientations $o$ and $o'$ compatible with respect to the homotopy, then $T (e_o\overline f)=T(e_{o'}\overline g)$, where $e_o$ is the standard embedding of the oriented surface $M_f$ (an annulus or a plane) in $\mathbb R^2$. In fact, for homotopic immersions $f$ and $g$ both numbers $S(f)-S(g)$ and $T(e_o\overline f)-T(e_{o'}\overline g)$ are reduced to the winding number of the lift of a certain null-homotopic immersion $f\#g^*$ to the universal covering of $M$. The immersions $S^1\to M$ considered above can be smooth or topological; a smoothing theorem is proved showing that this difference is irrelevant. We also give a classification of immersions of a graph in $M$ up to regular homotopy, in terms of the invariants $S(f)$ and $T(e_o\overline f)$ of the immersed circles. The proofs use the h-principle and are not very complicated. Bibliography: 13 entries.
Keywords: immersion, winding number, parity of the number of double points.
@article{SM_2018_209_4_a2,
     author = {S. A. Melikhov},
     title = {Immersions of the circle into a surface},
     journal = {Sbornik. Mathematics},
     pages = {503--518},
     year = {2018},
     volume = {209},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a2/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - Immersions of the circle into a surface
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 503
EP  - 518
VL  - 209
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a2/
LA  - en
ID  - SM_2018_209_4_a2
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T Immersions of the circle into a surface
%J Sbornik. Mathematics
%D 2018
%P 503-518
%V 209
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a2/
%G en
%F SM_2018_209_4_a2
S. A. Melikhov. Immersions of the circle into a surface. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 503-518. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a2/

[1] M. Adachi, Embeddings and immersions, Transl. Math. Monogr., 124, Amer. Math. Soc., Providence, RI, 1993, x+183 pp. | MR | Zbl

[2] C. Rourke, B. Sanderson, “The compression theorem I”, Geom. Topol., 5 (2001), 399–429 ; arXiv: math/9712235 | DOI | MR | Zbl

[3] C. Rourke, B. Sanderson, “The compression theorem III: applications”, Algebr. Geom. Topol., 3 (2003), 857–872 ; arXiv: math/0301356 | DOI | MR | Zbl

[4] D. A. Permyakov, “Regular homotopy for immersions of graphs into surfaces”, Sb. Math., 207:6 (2016), 854–872 | DOI | DOI | MR | Zbl

[5] Yu. Burman, M. Polyak, “Whitney's formulas for curves on surfaces”, Geom. Dedicata, 151 (2011), 97–106 ; arXiv: 0911.0393 | DOI | MR | Zbl

[6] J. R. Munkres, Elementary differential topology, Ann. of Math. Stud., 54, Rev. ed., Princeton Univ. Press, Princeton, NJ, 1966, xi+112 pp. | DOI | MR | Zbl

[7] D. A. Permyakov, Pogruzheniya grafov v poverkhnosti, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2016, 57 pp. ; arXiv: http://istina.msu.ru/dissertations/30796444/1611.09634

[8] M. A. Ivashkovskii, “Immersions of graphs into projective plane”, Moscow Univ. Math. Bull., 75:5 (2017), 217–220 | DOI

[9] Yu. Burman, M. Polyak, “Geometry of Whitney-type formulas”, Mosc. Math. J., 3:3 (2003), 823–832 | MR | Zbl

[10] L. Antoine, “Sur l'homéomorphie de deux figures et de leurs voisinages”, Thèses de l'entre-deux-guerres, 28 (1921), 1–106 | MR | Zbl

[11] E. E. Moise, Geometric topology in dimensions 2 and 3, Grad. Texts in Math., 47, Springer-Verlag, New York–Heidelberg, 1977, x+262 pp. | DOI | MR | Zbl

[12] L. V. Keldysh, “Topological imbeddings in Euclidean space”, Proc. Steklov Inst. Math., 81 (1966), 1–203 | MR | MR | Zbl | Zbl

[13] R. H. Bing, The geometric topology of 3-manifolds, Amer. Math. Soc. Colloq. Publ., 40, Amer. Math. Soc., Providence, RI, 1983, x+238 pp. | DOI | MR | Zbl