@article{SM_2018_209_4_a2,
author = {S. A. Melikhov},
title = {Immersions of the circle into a surface},
journal = {Sbornik. Mathematics},
pages = {503--518},
year = {2018},
volume = {209},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a2/}
}
S. A. Melikhov. Immersions of the circle into a surface. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 503-518. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a2/
[1] M. Adachi, Embeddings and immersions, Transl. Math. Monogr., 124, Amer. Math. Soc., Providence, RI, 1993, x+183 pp. | MR | Zbl
[2] C. Rourke, B. Sanderson, “The compression theorem I”, Geom. Topol., 5 (2001), 399–429 ; arXiv: math/9712235 | DOI | MR | Zbl
[3] C. Rourke, B. Sanderson, “The compression theorem III: applications”, Algebr. Geom. Topol., 3 (2003), 857–872 ; arXiv: math/0301356 | DOI | MR | Zbl
[4] D. A. Permyakov, “Regular homotopy for immersions of graphs into surfaces”, Sb. Math., 207:6 (2016), 854–872 | DOI | DOI | MR | Zbl
[5] Yu. Burman, M. Polyak, “Whitney's formulas for curves on surfaces”, Geom. Dedicata, 151 (2011), 97–106 ; arXiv: 0911.0393 | DOI | MR | Zbl
[6] J. R. Munkres, Elementary differential topology, Ann. of Math. Stud., 54, Rev. ed., Princeton Univ. Press, Princeton, NJ, 1966, xi+112 pp. | DOI | MR | Zbl
[7] D. A. Permyakov, Pogruzheniya grafov v poverkhnosti, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2016, 57 pp. ; arXiv: http://istina.msu.ru/dissertations/30796444/1611.09634
[8] M. A. Ivashkovskii, “Immersions of graphs into projective plane”, Moscow Univ. Math. Bull., 75:5 (2017), 217–220 | DOI
[9] Yu. Burman, M. Polyak, “Geometry of Whitney-type formulas”, Mosc. Math. J., 3:3 (2003), 823–832 | MR | Zbl
[10] L. Antoine, “Sur l'homéomorphie de deux figures et de leurs voisinages”, Thèses de l'entre-deux-guerres, 28 (1921), 1–106 | MR | Zbl
[11] E. E. Moise, Geometric topology in dimensions 2 and 3, Grad. Texts in Math., 47, Springer-Verlag, New York–Heidelberg, 1977, x+262 pp. | DOI | MR | Zbl
[12] L. V. Keldysh, “Topological imbeddings in Euclidean space”, Proc. Steklov Inst. Math., 81 (1966), 1–203 | MR | MR | Zbl | Zbl
[13] R. H. Bing, The geometric topology of 3-manifolds, Amer. Math. Soc. Colloq. Publ., 40, Amer. Math. Soc., Providence, RI, 1983, x+238 pp. | DOI | MR | Zbl