On Novák numbers
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 491-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New lower bounds are obtained for the number $\mathscr N_{\mathrm B}(x)$ of Novák numbers not exceeding the given quantity $x$. In addition, conditioned on the generalized Riemann Hypothesis, upper bounds are found for the number of prime factors of Novák numbers and a description of the prime factors of Novák numbers $N$ such that $2N$ is a Novák-Carmichael number is presented. Bibliography: 7 titles.
Keywords: Novák numbers, large sieve.
Mots-clés : primes
@article{SM_2018_209_4_a1,
     author = {A. B. Kalmynin},
     title = {On {Nov\'ak} numbers},
     journal = {Sbornik. Mathematics},
     pages = {491--502},
     year = {2018},
     volume = {209},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a1/}
}
TY  - JOUR
AU  - A. B. Kalmynin
TI  - On Novák numbers
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 491
EP  - 502
VL  - 209
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a1/
LA  - en
ID  - SM_2018_209_4_a1
ER  - 
%0 Journal Article
%A A. B. Kalmynin
%T On Novák numbers
%J Sbornik. Mathematics
%D 2018
%P 491-502
%V 209
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a1/
%G en
%F SM_2018_209_4_a1
A. B. Kalmynin. On Novák numbers. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 491-502. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a1/

[1] A. Rotkiewicz, “On the congruence $2^{n-2} \equiv 1 (\operatorname{mod} n)$”, Math. Comp., 43:167 (1984), 271–272 | DOI | MR | Zbl

[2] A. A. Karatsuba, Š. Porubský, M. Rokyta, Z. Vlášek, “Nedožité sedmdesátiny Prof. RNDr. Břetislava Nováka, DrSc. (1938–2003)”, Pokroky matematiky, fyziky a astronomie, ročnik, 53:1 (2008), 53–58

[3] A. A. Karatsuba, Š. Porubský, M. Rokyta, Z. Vlášek, “Prof. RNDr. Břetislav Nov{'a}k, DrSc. (1938–2003) would be seventy”, Math. Bohem., 133:2 (2008), 209–218 | MR

[4] J. J. Alba González, F. Luca, C. Pomerance, I. E. Shparlinski, “On numbers $n$ dividing the $n$-th term of a linear recurrence”, Proc. Edinb. Math. Soc. (2), 55:2 (2012), 271–289 | DOI | MR | Zbl

[5] B. Michels, Zsigmondy's theorem users.ugent.be/~bmichels/files/ zsigmondy_en.pdf

[6] P. Kurlberg, C. Pomerance, “On a problem of Arnold: the average multiplicative order of a given integer”, Algebra Number Theory, 7:4 (2013), 981–999 | DOI | MR | Zbl

[7] A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1988, vi+320 pp. | MR | MR | Zbl | Zbl