Affine Walsh-type systems of functions in symmetric spaces
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 469-490
Voir la notice de l'article provenant de la source Math-Net.Ru
Affine Walsh-type systems of functions in symmetric spaces are investigated. It is shown that such a system can only be an unconditional basis in $L^2$. On the other hand the Besselian affine system generated by a function $f$ in the Zygmund-Orlicz space $\operatorname{Exp}L^p$, $p>0$, is an $\mathrm{RUC}$-system in a symmetric space $X$ if and only if $(\operatorname{Exp}L^q)^0\subset X\subset L^2$, where $(\operatorname{Exp}L^q)^0$ is the closure of $L^\infty$ in $\operatorname{Exp}L^q$ and $q=2p/(p+2)$.
Bibliography: 20 titles.
Keywords:
Walsh functions, Rademacher functions, Haar functions, symmetric space, Zygmund-Orlicz space.
@article{SM_2018_209_4_a0,
author = {S. V. Astashkin and P. A. Terekhin},
title = {Affine {Walsh-type} systems of functions in symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {469--490},
publisher = {mathdoc},
volume = {209},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/}
}
S. V. Astashkin; P. A. Terekhin. Affine Walsh-type systems of functions in symmetric spaces. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 469-490. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/