Affine Walsh-type systems of functions in symmetric spaces
Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 469-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Affine Walsh-type systems of functions in symmetric spaces are investigated. It is shown that such a system can only be an unconditional basis in $L^2$. On the other hand the Besselian affine system generated by a function $f$ in the Zygmund-Orlicz space $\operatorname{Exp}L^p$, $p>0$, is an $\mathrm{RUC}$-system in a symmetric space $X$ if and only if $(\operatorname{Exp}L^q)^0\subset X\subset L^2$, where $(\operatorname{Exp}L^q)^0$ is the closure of $L^\infty$ in $\operatorname{Exp}L^q$ and $q=2p/(p+2)$. Bibliography: 20 titles.
Keywords: Walsh functions, Rademacher functions, Haar functions, symmetric space, Zygmund-Orlicz space.
@article{SM_2018_209_4_a0,
     author = {S. V. Astashkin and P. A. Terekhin},
     title = {Affine {Walsh-type} systems of functions in symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {469--490},
     year = {2018},
     volume = {209},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - P. A. Terekhin
TI  - Affine Walsh-type systems of functions in symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 469
EP  - 490
VL  - 209
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/
LA  - en
ID  - SM_2018_209_4_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A P. A. Terekhin
%T Affine Walsh-type systems of functions in symmetric spaces
%J Sbornik. Mathematics
%D 2018
%P 469-490
%V 209
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/
%G en
%F SM_2018_209_4_a0
S. V. Astashkin; P. A. Terekhin. Affine Walsh-type systems of functions in symmetric spaces. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 469-490. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/

[1] P. G. Dodds, E. M. Semenov, F. A. Sukochev, “RUC systems in rearrangement invariant spaces”, Studia Math., 151:2 (2002), 161–173 | DOI | MR | Zbl

[2] B. Granados, “Walsh wavelets”, Ann. Univ. Sci. Budapest. Sect. Comput., 13 (1992), 225–236 | MR | Zbl

[3] I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp. | DOI | MR | Zbl

[4] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[5] P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400 | Zbl

[6] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | DOI | MR | Zbl

[7] P. R. Halmos, “Shifts on Hilbert spaces”, J. Reine Angew. Math., 1961:208 (1961), 102–112 | DOI | MR | Zbl

[8] P. Billard, S. Kwapién, A. Pełczyǹski, Ch. Samuel, “Biorthogonal systems of random unconditional convergence in Banach spaces”, Texas functional analysis seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35 | MR | Zbl

[9] E. R. Lorch, “Bicontinuous linear transformations in certain vector spaces”, Bull. Amer. Math. Soc., 45:8 (1939), 564–569 | DOI | MR | Zbl

[10] L. Tzafriri, “Uniqueness of structure in Banach spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1635–1669 | MR | Zbl

[11] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[12] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[13] S. V. Astashkin, “Rademacher functions in symmetric spaces”, J. Math. Sci. (N. Y.), 169:6 (2010), 725–886 | DOI | MR | Zbl

[14] V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[15] S. V. Astashkin, L. Maligranda, E. M. Semenov, “Multiplicator space and complemented subspaces of rearrangement invariant space”, J. Funct. Anal., 202:1 (2003), 247–276 | DOI | MR | Zbl

[16] V. F. Gaposhkin, “O bezuslovnykh bazisakh v prostranstvakh $L^p$ ($p>1$)”, UMN, 13:4(82) (1958), 179–184 | MR | Zbl

[17] P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318 | DOI | DOI | MR | Zbl

[18] S. V. Astashkin, G. P. Curbera, K. E. Tikhomirov, “On the existence of RUC systems in rearrangement invariant spaces”, Math. Nachr., 289:2-3 (2016), 175–186 | DOI | MR | Zbl

[19] S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math., 58:2 (1976), 197–208 | DOI | MR | Zbl

[20] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl | Zbl