@article{SM_2018_209_4_a0,
author = {S. V. Astashkin and P. A. Terekhin},
title = {Affine {Walsh-type} systems of functions in symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {469--490},
year = {2018},
volume = {209},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/}
}
S. V. Astashkin; P. A. Terekhin. Affine Walsh-type systems of functions in symmetric spaces. Sbornik. Mathematics, Tome 209 (2018) no. 4, pp. 469-490. http://geodesic.mathdoc.fr/item/SM_2018_209_4_a0/
[1] P. G. Dodds, E. M. Semenov, F. A. Sukochev, “RUC systems in rearrangement invariant spaces”, Studia Math., 151:2 (2002), 161–173 | DOI | MR | Zbl
[2] B. Granados, “Walsh wavelets”, Ann. Univ. Sci. Budapest. Sect. Comput., 13 (1992), 225–236 | MR | Zbl
[3] I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp. | DOI | MR | Zbl
[4] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl
[5] P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400 | Zbl
[6] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | DOI | MR | Zbl
[7] P. R. Halmos, “Shifts on Hilbert spaces”, J. Reine Angew. Math., 1961:208 (1961), 102–112 | DOI | MR | Zbl
[8] P. Billard, S. Kwapién, A. Pełczyǹski, Ch. Samuel, “Biorthogonal systems of random unconditional convergence in Banach spaces”, Texas functional analysis seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35 | MR | Zbl
[9] E. R. Lorch, “Bicontinuous linear transformations in certain vector spaces”, Bull. Amer. Math. Soc., 45:8 (1939), 564–569 | DOI | MR | Zbl
[10] L. Tzafriri, “Uniqueness of structure in Banach spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1635–1669 | MR | Zbl
[11] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl
[12] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl
[13] S. V. Astashkin, “Rademacher functions in symmetric spaces”, J. Math. Sci. (N. Y.), 169:6 (2010), 725–886 | DOI | MR | Zbl
[14] V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl
[15] S. V. Astashkin, L. Maligranda, E. M. Semenov, “Multiplicator space and complemented subspaces of rearrangement invariant space”, J. Funct. Anal., 202:1 (2003), 247–276 | DOI | MR | Zbl
[16] V. F. Gaposhkin, “O bezuslovnykh bazisakh v prostranstvakh $L^p$ ($p>1$)”, UMN, 13:4(82) (1958), 179–184 | MR | Zbl
[17] P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318 | DOI | DOI | MR | Zbl
[18] S. V. Astashkin, G. P. Curbera, K. E. Tikhomirov, “On the existence of RUC systems in rearrangement invariant spaces”, Math. Nachr., 289:2-3 (2016), 175–186 | DOI | MR | Zbl
[19] S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math., 58:2 (1976), 197–208 | DOI | MR | Zbl
[20] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl | Zbl