Relative asymptotics of orthogonal polynomials for perturbed measures
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 449-468
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We survey and present some new results that are related to the behaviour of orthogonal polynomials in the plane under small perturbations of the measure of orthogonality. More precisely, we introduce the notion of a polynomially small (PS) perturbation of a measure. Namely, if $\mu_0 \geqslant \mu_1$ and $\{p_n(\mu_j,z)\}_{n=0}^\infty$, $j=0,1$, are the associated orthonormal polynomial sequences, then $\mu_0$ is a PS perturbation of $\mu_1$ if $\|p_n(\mu_1,\,\cdot\,)\|_{L_2(\mu_0-\mu_1)}\to 0$, as $n\to\infty$. In such a case we establish relative asymptotic results for the two sequences of orthonormal polynomials. We also provide results dealing with the behaviour of the zeros of PS perturbations of area orthogonal (Bergman) polynomials.
Bibliography: 35 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Christoffel function, Bergman polynomial, perturbed measure.
Mots-clés : orthogonal polynomial
                    
                  
                
                
                Mots-clés : orthogonal polynomial
@article{SM_2018_209_3_a7,
     author = {E. B. Saff and N. Stylianopoulos},
     title = {Relative asymptotics of orthogonal polynomials for perturbed measures},
     journal = {Sbornik. Mathematics},
     pages = {449--468},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a7/}
}
                      
                      
                    E. B. Saff; N. Stylianopoulos. Relative asymptotics of orthogonal polynomials for perturbed measures. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 449-468. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a7/
