Exact interpolation, spurious poles, and uniform convergence of multipoint Pad\'e approximants
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 432-448
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We introduce the concept of an exact interpolation index $n$ associated with a function $f$ and open set $\mathscr{L}$: all rational interpolants ${R=p/q}$ of type $(n,n)$ to $f$, with interpolation points in $\mathscr{L}$, interpolate exactly in the sense that $fq-p$ has exactly $2n+1$ zeros in $\mathscr{L}$. We show that in the absence of exact interpolation, there are interpolants with interpolation points in $\mathscr{L}$ and spurious poles. Conversely, for sequences of integers that are associated with exact interpolation to an entire function, there is at least a subsequence with no spurious poles, and consequently, there is uniform convergence.
Bibliography: 22 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Padé approximation, multipoint Padé approximants, spurious poles.
                    
                    
                    
                  
                
                
                @article{SM_2018_209_3_a6,
     author = {D. S. Lubinsky},
     title = {Exact interpolation, spurious poles, and uniform convergence of multipoint {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {432--448},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a6/}
}
                      
                      
                    TY - JOUR AU - D. S. Lubinsky TI - Exact interpolation, spurious poles, and uniform convergence of multipoint Pad\'e approximants JO - Sbornik. Mathematics PY - 2018 SP - 432 EP - 448 VL - 209 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_3_a6/ LA - en ID - SM_2018_209_3_a6 ER -
D. S. Lubinsky. Exact interpolation, spurious poles, and uniform convergence of multipoint Pad\'e approximants. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 432-448. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a6/
