Exact errors of best approximation for complex-valued periodic functions
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 421-431
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend Nagy's theorem on best approximation by trigonometric polynomials in the $L_1$ metric to certain complex-valued periodic functions. We use this result to find exact constants of best approximation in $L_1$ and $L_\infty$ on some complex convolution classes. For classes of real-valued convolutions these constants were found by Nikol'skii. As an example, we apply these results to the Schwarz kernel and to the corresponding convolution classes.
Bibliography: 20 titles.
Keywords:
trigonometric polynomial, complex-valued function, best approximation, Nagy's theorem
Mots-clés : convolution classes.
Mots-clés : convolution classes.
@article{SM_2018_209_3_a5,
author = {M. I. Ganzburg},
title = {Exact errors of best approximation for complex-valued periodic functions},
journal = {Sbornik. Mathematics},
pages = {421--431},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/}
}
M. I. Ganzburg. Exact errors of best approximation for complex-valued periodic functions. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 421-431. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/