Mots-clés : convolution classes.
@article{SM_2018_209_3_a5,
author = {M. I. Ganzburg},
title = {Exact errors of best approximation for complex-valued periodic functions},
journal = {Sbornik. Mathematics},
pages = {421--431},
year = {2018},
volume = {209},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/}
}
M. I. Ganzburg. Exact errors of best approximation for complex-valued periodic functions. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 421-431. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/
[1] N. I. Achieser, Theory of approximation, Frederick Ungar Publishing Co., New York, 1956, x+307 pp. | MR | MR | Zbl | Zbl
[2] E. Carneiro, F. Littmann, “Entire approximations for a class of truncated and odd functions”, J. Fourier Anal. Appl., 19:5 (2013), 967–996 | DOI | MR | Zbl
[3] E. Carneiro, J. D. Vaaler, “Some extremal functions in Fourier analysis. III”, Constr. Approx., 31:2 (2010), 259–288 | DOI | MR | Zbl
[4] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl
[5] M. I. Ganzburg, “Best approximation of functions like $|x|^\lambda\exp(-A|x|^{-\alpha})$”, J. Approx. Theory, 92:3 (1998), 379–410 | DOI | MR | Zbl
[6] M. Ganzburg, “Moduli of smoothness and best approximation of functions with singularities”, Comput. Math. Appl., 40:1 (2000), 81–93 | DOI | MR | Zbl
[7] M. I. Ganzburg, “$L$-approximation to non-periodic functions”, J. Concr. Appl. Math., 8:2 (2010), 208–215 | MR | Zbl
[8] S. W. Graham, J. D. Vaaler, “A class of extremal functions for the Fourier transform”, Trans. Amer. Math. Soc., 265:1 (1981), 283–302 | DOI | MR | Zbl
[9] A. N. Kolmogorov, “Zamechanie no povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1(23) (1948), 216–221 | MR | Zbl
[10] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR
[11] B. R. Kripke, T. J. Rivlin, “Approximation in the metric of $L^1(X,\mu)$”, Trans. Amer. Math. Soc., 119:1 (1965), 101–122 | DOI | MR | Zbl
[12] Xian-Jin Li, J. D. Vaaler, “Some trigonometric extremal functions and the Erdös–Turán inequalities”, Indiana Univ. Math. J., 48:1 (1999), 183–236 | DOI | MR | Zbl
[13] A. Markoff, “Recherches sur les valeurs extrèmes des intégrales et sur l'interpolation”, Acta Math., 28:1 (1904), 243–301 | DOI | MR | Zbl | Zbl
[14] B. v. Sz. Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 90 (1938), 103–134 | Zbl
[15] B. v. Sz. Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. II. Nichtperiodischer Fall”, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 91 (1939), 3–24 | Zbl
[16] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10:3 (1946), 207–256 | MR | Zbl
[17] I. Singer, The theory of best approximation and functional analysis, CBMS–NSF Regional Conf. Ser. in Appl. Math., 13, SIAM, Philadelphia, PA, 1974, vii+95 pp. | MR | Zbl
[18] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl
[19] J. D. Vaaler, “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (N.S.), 12:2 (1985), 183–216 | DOI | MR | Zbl
[20] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl