Exact errors of best approximation for complex-valued periodic functions
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 421-431

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend Nagy's theorem on best approximation by trigonometric polynomials in the $L_1$ metric to certain complex-valued periodic functions. We use this result to find exact constants of best approximation in $L_1$ and $L_\infty$ on some complex convolution classes. For classes of real-valued convolutions these constants were found by Nikol'skii. As an example, we apply these results to the Schwarz kernel and to the corresponding convolution classes. Bibliography: 20 titles.
Keywords: trigonometric polynomial, complex-valued function, best approximation, Nagy's theorem
Mots-clés : convolution classes.
@article{SM_2018_209_3_a5,
     author = {M. I. Ganzburg},
     title = {Exact errors of best approximation for complex-valued periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {421--431},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/}
}
TY  - JOUR
AU  - M. I. Ganzburg
TI  - Exact errors of best approximation for complex-valued periodic functions
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 421
EP  - 431
VL  - 209
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/
LA  - en
ID  - SM_2018_209_3_a5
ER  - 
%0 Journal Article
%A M. I. Ganzburg
%T Exact errors of best approximation for complex-valued periodic functions
%J Sbornik. Mathematics
%D 2018
%P 421-431
%V 209
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/
%G en
%F SM_2018_209_3_a5
M. I. Ganzburg. Exact errors of best approximation for complex-valued periodic functions. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 421-431. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a5/