Ahlfors problem for polynomials
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 320-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a conjecture that the asymptotics for Chebyshev polynomials in a complex domain can be given in terms of the reproducing kernels of a suitable Hilbert space of analytic functions in this domain. It is based on two classical results due to Garabedian and Widom. To support this conjecture we study the asymptotics for Ahlfors extremal polynomials in the complement to a system of intervals on $\mathbb{R}$, arcs on $\mathbb{T}$, and the asymptotics of the extremal entire functions for the continuous counterpart of this problem. Bibliography: 35 titles.
Keywords: Chebyshev polynomial, analytic capacity, hyperelliptic Riemann surface, complex Green's and Martin functions, reproducing kernel.
Mots-clés : Abel-Jacobi inversion
@article{SM_2018_209_3_a2,
     author = {B. Eichinger and P. Yuditskii},
     title = {Ahlfors problem for polynomials},
     journal = {Sbornik. Mathematics},
     pages = {320--351},
     year = {2018},
     volume = {209},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a2/}
}
TY  - JOUR
AU  - B. Eichinger
AU  - P. Yuditskii
TI  - Ahlfors problem for polynomials
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 320
EP  - 351
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_3_a2/
LA  - en
ID  - SM_2018_209_3_a2
ER  - 
%0 Journal Article
%A B. Eichinger
%A P. Yuditskii
%T Ahlfors problem for polynomials
%J Sbornik. Mathematics
%D 2018
%P 320-351
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2018_209_3_a2/
%G en
%F SM_2018_209_3_a2
B. Eichinger; P. Yuditskii. Ahlfors problem for polynomials. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 320-351. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a2/

[1] M. B. Abrahamse, “The Pick interpolation theorem for finitely connected domains”, Michigan Math. J., 26:2 (1979), 195–203 | DOI | MR | Zbl

[2] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2., verb. Aufl., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl

[3] N. I. Akhiezer, “Ortogonalnye mnogochleny na sisteme intervalov i ikh kontinualnye analogi”, Trudy IV Vsesoyuznogo matematicheskogo s'ezda (Leningrad, 1961), v. 2, Nauka, L., 1964, 623–628 | Zbl

[4] A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl

[5] J. A. Ball, V. Vinnikov, “Zero-pole interpolation for meromorphic matrix functions on an algebraic curve and transfer functions of 2D systems”, Acta Appl. Math., 45:3 (1996), 239–316 | DOI | MR | Zbl

[6] J. S. Christiansen, B. Simon, M. Zinchenko, “Asymptotics of Chebychev polynomials, I. Subsets of $\mathbb{R}$”, Invent. Math., 208:1 (2017), 217–245 | DOI | MR | Zbl

[7] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | DOI | MR | MR | Zbl | Zbl

[8] D. Damanik, P. Yuditskii, “Counterexamples to the Kotani–Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces”, Adv. Math., 293 (2016), 738–781 | DOI | MR | Zbl

[9] B. Eichinger, “Szegő–Widom asymptotics of Chebychev polynomials on circular arcs”, J. Approx. Theory, 217 (2017), 15–25 ; arXiv: 1607.07305 | DOI | MR | Zbl

[10] A. Eremenko, P. Yuditskii, “Comb functions”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 99–118 | DOI | MR | Zbl

[11] A. Eremenko, P. Yuditskii, “Polynomials of the best uniform approximation to $\operatorname{sgn}(x)$ on two intervals”, J. Anal. Math., 114 (2011), 285–315 | DOI | MR | Zbl

[12] J. D. Fay, Theta functions on {R}iemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp. | DOI | MR | Zbl

[13] P. R. Garabedian, “Schwarz's lemma and the {S}zegö kernel function”, Trans. Amer. Math. Soc., 67:1 (1949), 1–35 | DOI | MR | Zbl

[14] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[15] S. Kalmykov, B. Nagy, V. Totik, Bernstein- and Markov-type inequalities for rational functions, arXiv: 1610.06706v1

[16] S. Kupin, P. Yuditskii, “Analogs of the Nehari and Sarason theorems for character-automorphic functions and some related questions”, Topics in interpolation theory (Leipzig, 1994), Oper. Theory Adv. Appl., 95, Birkhäuser, Basel, 1997, 373–390 | DOI | MR | Zbl

[17] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl

[18] E. Levin, D. S. Lubinsky, Orthogonal polynomials for exponential weights, CMS Books Math./Ouvrages Math. SMC, 4, Springer–Verlag, New York, 2001, xii+476 pp. | DOI | MR | Zbl

[19] A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | DOI | MR | Zbl

[20] V. A. Marčenko, I. V. Ostrovskii, “A characterization of the spectrum of Hill's operator”, Math. USSR-Sb., 26:4 (1975), 493–554 | DOI | MR | Zbl

[21] D. Mumford, Tata lectures on theta. I, Mod. Birkhäuser Class., Birkhäuser Boston, Inc., Boston, MA, 2007, xiv+235 pp. | DOI | MR | Zbl

[22] D. Mumford, Tata lectures on theta. II, Mod. Birkhäuser Class., Birkhäuser Boston, Inc., Boston, MA, 2007, xiv+272 pp. | DOI | MR | Zbl

[23] Ch. Pommerenke, “Über die analytische Kapazität”, Arch. Math. (Basel), 11:1 (1960), 270–277 | DOI | MR | Zbl

[24] Ch. Pommerenke, “On the Green's function of Fuchsian groups”, Ann. Acad. Sci. Fenn. Ser. A I Math., 2 (1976), 409–427 | DOI | MR | Zbl

[25] B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp. | MR | Zbl

[26] B. Simon, Basic complex analysis, Compr. Course Anal., Part 2A, Amer. Math. Soc., Providence, RI, 2015, xviii+641 pp. | DOI | MR | Zbl

[27] M. L. Sodin, P. M. Yuditskii, “Functions deviating least from zero on closed subsets of the real axis”, St. Petersburg Math. J., 4:2 (1993), 201–249 | MR | Zbl

[28] M. Sodin, P. Yuditskii, “Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions”, J. Geom. Anal., 7:3 (1997), 387–435 | DOI | MR | Zbl

[29] P. K. Suetin, “Fundamental properties of polynomials orthogonal on a contour”, Russian Math. Surveys, 21:2 (1966), 35–83 | DOI | MR | Zbl

[30] V. Totik, “Chebyshev polynomials on a system of curves”, J. Anal. Math., 118:1 (2012), 317–338 | DOI | MR | Zbl

[31] A. Volberg, P. Yuditskii, “Kotani–Last problem and Hardy spaces on surfaces of Widom type”, Invent. Math., 197:3 (2014), 683–740 | DOI | MR | Zbl

[32] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Advances in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl

[33] P. Yuditskii, “A special case of de Branges' theorem on the inverse monodromy problem”, Integral Equations Operator Theory, 39:2 (2001), 229–252 | DOI | MR | Zbl

[34] Zeyuan Allen-Zhu, Yuanzhi Li, “Faster principal component regression via optimal polynomial approximation to $\operatorname{sgn}(x)$”, arXiv: 1608.04773v1

[35] P. Yuditskii, “Killip–Simon problem and Jacobi flow on GMP matrices”, Adv. Math., 323 (2018), 811–865 ; Preprint NI 15005, Isaac Newton Inst. for Math. Sci., 2015, 50 pp., arXiv: 1505.00972 | DOI | MR | Zbl