Mots-clés : Abel-Jacobi inversion
@article{SM_2018_209_3_a2,
author = {B. Eichinger and P. Yuditskii},
title = {Ahlfors problem for polynomials},
journal = {Sbornik. Mathematics},
pages = {320--351},
year = {2018},
volume = {209},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a2/}
}
B. Eichinger; P. Yuditskii. Ahlfors problem for polynomials. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 320-351. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a2/
[1] M. B. Abrahamse, “The Pick interpolation theorem for finitely connected domains”, Michigan Math. J., 26:2 (1979), 195–203 | DOI | MR | Zbl
[2] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2., verb. Aufl., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl
[3] N. I. Akhiezer, “Ortogonalnye mnogochleny na sisteme intervalov i ikh kontinualnye analogi”, Trudy IV Vsesoyuznogo matematicheskogo s'ezda (Leningrad, 1961), v. 2, Nauka, L., 1964, 623–628 | Zbl
[4] A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl
[5] J. A. Ball, V. Vinnikov, “Zero-pole interpolation for meromorphic matrix functions on an algebraic curve and transfer functions of 2D systems”, Acta Appl. Math., 45:3 (1996), 239–316 | DOI | MR | Zbl
[6] J. S. Christiansen, B. Simon, M. Zinchenko, “Asymptotics of Chebychev polynomials, I. Subsets of $\mathbb{R}$”, Invent. Math., 208:1 (2017), 217–245 | DOI | MR | Zbl
[7] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | DOI | MR | MR | Zbl | Zbl
[8] D. Damanik, P. Yuditskii, “Counterexamples to the Kotani–Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces”, Adv. Math., 293 (2016), 738–781 | DOI | MR | Zbl
[9] B. Eichinger, “Szegő–Widom asymptotics of Chebychev polynomials on circular arcs”, J. Approx. Theory, 217 (2017), 15–25 ; arXiv: 1607.07305 | DOI | MR | Zbl
[10] A. Eremenko, P. Yuditskii, “Comb functions”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 99–118 | DOI | MR | Zbl
[11] A. Eremenko, P. Yuditskii, “Polynomials of the best uniform approximation to $\operatorname{sgn}(x)$ on two intervals”, J. Anal. Math., 114 (2011), 285–315 | DOI | MR | Zbl
[12] J. D. Fay, Theta functions on {R}iemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp. | DOI | MR | Zbl
[13] P. R. Garabedian, “Schwarz's lemma and the {S}zegö kernel function”, Trans. Amer. Math. Soc., 67:1 (1949), 1–35 | DOI | MR | Zbl
[14] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl
[15] S. Kalmykov, B. Nagy, V. Totik, Bernstein- and Markov-type inequalities for rational functions, arXiv: 1610.06706v1
[16] S. Kupin, P. Yuditskii, “Analogs of the Nehari and Sarason theorems for character-automorphic functions and some related questions”, Topics in interpolation theory (Leipzig, 1994), Oper. Theory Adv. Appl., 95, Birkhäuser, Basel, 1997, 373–390 | DOI | MR | Zbl
[17] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl
[18] E. Levin, D. S. Lubinsky, Orthogonal polynomials for exponential weights, CMS Books Math./Ouvrages Math. SMC, 4, Springer–Verlag, New York, 2001, xii+476 pp. | DOI | MR | Zbl
[19] A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | DOI | MR | Zbl
[20] V. A. Marčenko, I. V. Ostrovskii, “A characterization of the spectrum of Hill's operator”, Math. USSR-Sb., 26:4 (1975), 493–554 | DOI | MR | Zbl
[21] D. Mumford, Tata lectures on theta. I, Mod. Birkhäuser Class., Birkhäuser Boston, Inc., Boston, MA, 2007, xiv+235 pp. | DOI | MR | Zbl
[22] D. Mumford, Tata lectures on theta. II, Mod. Birkhäuser Class., Birkhäuser Boston, Inc., Boston, MA, 2007, xiv+272 pp. | DOI | MR | Zbl
[23] Ch. Pommerenke, “Über die analytische Kapazität”, Arch. Math. (Basel), 11:1 (1960), 270–277 | DOI | MR | Zbl
[24] Ch. Pommerenke, “On the Green's function of Fuchsian groups”, Ann. Acad. Sci. Fenn. Ser. A I Math., 2 (1976), 409–427 | DOI | MR | Zbl
[25] B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp. | MR | Zbl
[26] B. Simon, Basic complex analysis, Compr. Course Anal., Part 2A, Amer. Math. Soc., Providence, RI, 2015, xviii+641 pp. | DOI | MR | Zbl
[27] M. L. Sodin, P. M. Yuditskii, “Functions deviating least from zero on closed subsets of the real axis”, St. Petersburg Math. J., 4:2 (1993), 201–249 | MR | Zbl
[28] M. Sodin, P. Yuditskii, “Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions”, J. Geom. Anal., 7:3 (1997), 387–435 | DOI | MR | Zbl
[29] P. K. Suetin, “Fundamental properties of polynomials orthogonal on a contour”, Russian Math. Surveys, 21:2 (1966), 35–83 | DOI | MR | Zbl
[30] V. Totik, “Chebyshev polynomials on a system of curves”, J. Anal. Math., 118:1 (2012), 317–338 | DOI | MR | Zbl
[31] A. Volberg, P. Yuditskii, “Kotani–Last problem and Hardy spaces on surfaces of Widom type”, Invent. Math., 197:3 (2014), 683–740 | DOI | MR | Zbl
[32] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Advances in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl
[33] P. Yuditskii, “A special case of de Branges' theorem on the inverse monodromy problem”, Integral Equations Operator Theory, 39:2 (2001), 229–252 | DOI | MR | Zbl
[34] Zeyuan Allen-Zhu, Yuanzhi Li, “Faster principal component regression via optimal polynomial approximation to $\operatorname{sgn}(x)$”, arXiv: 1608.04773v1
[35] P. Yuditskii, “Killip–Simon problem and Jacobi flow on GMP matrices”, Adv. Math., 323 (2018), 811–865 ; Preprint NI 15005, Isaac Newton Inst. for Math. Sci., 2015, 50 pp., arXiv: 1505.00972 | DOI | MR | Zbl