Rellich inequalities for polyharmonic operators in plane domains
Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 292-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functionals whose values are defined as sharp constants in Rellich inequalities are investigated for polyharmonic operators in plane domains. The weight function is taken to be a power of the distance of a point to the boundary of the domain. Estimates are obtained for arbitrary domains, as is a test for these constants to be positive, and precise values are found for convex domains and for domains close to convex in a certain sense. The case when the weight function is taken to be a power of the coefficient in the Poincaré metric is also treated. Bibliography: 28 titles.
Keywords: Rellich inequality, polyharmonic operator, uniformly perfect set
Mots-clés : Poincaré metric.
@article{SM_2018_209_3_a1,
     author = {F. G. Avkhadiev},
     title = {Rellich inequalities for polyharmonic operators in plane domains},
     journal = {Sbornik. Mathematics},
     pages = {292--319},
     year = {2018},
     volume = {209},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a1/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Rellich inequalities for polyharmonic operators in plane domains
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 292
EP  - 319
VL  - 209
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_3_a1/
LA  - en
ID  - SM_2018_209_3_a1
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Rellich inequalities for polyharmonic operators in plane domains
%J Sbornik. Mathematics
%D 2018
%P 292-319
%V 209
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2018_209_3_a1/
%G en
%F SM_2018_209_3_a1
F. G. Avkhadiev. Rellich inequalities for polyharmonic operators in plane domains. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 292-319. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a1/

[1] E. B. Davies, “A review of Hardy inequalities”, The Maz'ya anniversary collection, v. 2, Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 55–67 | DOI | MR | Zbl

[2] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl

[3] F. Avkhadiev, A. Laptev, “Hardy inequalities for nonconvex domains”, Around the research of Vladimir Maz'ya, v. I, Int. Math. Ser. (N. Y.), 11, Springer, New York, 2010, 1–12 | DOI | MR | Zbl

[4] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876 | DOI | DOI | MR | Zbl

[5] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl

[6] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl

[7] J. L. Fernández, J. M. Rodríguez, “The exponent of convergence of Riemann surfaces. Bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Ser. A I Math., 15:1 (1990), 165–183 | DOI | MR | Zbl

[8] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[9] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255:1 (2006), 2–12 | DOI | MR | Zbl

[10] M. P. Owen, “The Hardy–Rellich inequality for polyharmonic operators”, Proc. Roy. Soc. Edinburgh Sect. A, 129:4 (1999), 825–839 | DOI | MR | Zbl

[11] F. G. Avkhadiev, “Rellich type inequalities in domains of the Euclidean space”, Russian Math. (Iz. VUZ), 60:1 (2016), 60–63 | DOI | MR | Zbl

[12] F. G. Avkhadiev, “Hardy–Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442:2 (2016), 469–484 | DOI | MR | Zbl

[13] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | DOI | MR | Zbl

[14] F. G. Avkhadiev, “Integral inequalities in domains of hyperbolic type and their applications”, Sb. Math., 206:12 (2015), 1657–1681 | DOI | DOI | MR | Zbl

[15] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York–London–Paris, 1969, x+127 pp. | MR | Zbl

[16] P. Caldiroli, R. Musina, “Rellich inequalities with weights”, Calc. Var. Partial Differential Equations, 45:1-2 (2012), 147–164 | DOI | MR | Zbl

[17] L. Carleson, T. W. Gamelin, Complex dynamics, Universitext Tracts Math., Springer-Verlag, New York, 1993, x+175 pp. | DOI | MR | Zbl

[18] F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Front. Math., Birkhäuser Verlag, Basel, 2009, viii+156 pp. | DOI | MR | Zbl

[19] A. F. Beardon, Ch. Pommerenke, “The Poincaré metric of plane domains”, J. London Math. Soc. (2), 18:3 (1978), 475–483 | DOI | MR | Zbl

[20] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math. (Basel), 32 (1979), 192–199 | DOI | MR | Zbl

[21] T. Sugawa, “Various domain constants related to uniform perfectness”, Complex Variables Theory Appl., 36:4 (1998), 311–345 | DOI | MR | Zbl

[22] T. Sugawa, “Uniformly perfect sets: analytic and geometric aspects”, Sugaku Expositions, 16:2 (2003), 225–242 | MR | Zbl

[23] T. Sugawa, “Modulus techniques in geometric function theory”, J. Anal., 18 (2010), 373–397 | MR | Zbl

[24] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl

[25] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[26] E. B. Davies, “The Hardy constant”, Quart. J. Math.Oxford Ser. (2), 46 (1995), 417–431 | DOI | MR | Zbl

[27] F. G. Avkhadiev, I. K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russian Math. (Iz. VUZ), 58:2 (2014), 58–61 | DOI | MR | Zbl

[28] F. G. Avkhadiev, “Sharp constants in Hardy type inequalities”, Russian Math. (Iz. VUZ), 59:10 (2015), 53–56 | DOI | MR | Zbl