Mots-clés : Poincaré metric.
@article{SM_2018_209_3_a1,
author = {F. G. Avkhadiev},
title = {Rellich inequalities for polyharmonic operators in plane domains},
journal = {Sbornik. Mathematics},
pages = {292--319},
year = {2018},
volume = {209},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_3_a1/}
}
F. G. Avkhadiev. Rellich inequalities for polyharmonic operators in plane domains. Sbornik. Mathematics, Tome 209 (2018) no. 3, pp. 292-319. http://geodesic.mathdoc.fr/item/SM_2018_209_3_a1/
[1] E. B. Davies, “A review of Hardy inequalities”, The Maz'ya anniversary collection, v. 2, Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 55–67 | DOI | MR | Zbl
[2] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl
[3] F. Avkhadiev, A. Laptev, “Hardy inequalities for nonconvex domains”, Around the research of Vladimir Maz'ya, v. I, Int. Math. Ser. (N. Y.), 11, Springer, New York, 2010, 1–12 | DOI | MR | Zbl
[4] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876 | DOI | DOI | MR | Zbl
[5] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl
[6] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl
[7] J. L. Fernández, J. M. Rodríguez, “The exponent of convergence of Riemann surfaces. Bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Ser. A I Math., 15:1 (1990), 165–183 | DOI | MR | Zbl
[8] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl
[9] F. G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255:1 (2006), 2–12 | DOI | MR | Zbl
[10] M. P. Owen, “The Hardy–Rellich inequality for polyharmonic operators”, Proc. Roy. Soc. Edinburgh Sect. A, 129:4 (1999), 825–839 | DOI | MR | Zbl
[11] F. G. Avkhadiev, “Rellich type inequalities in domains of the Euclidean space”, Russian Math. (Iz. VUZ), 60:1 (2016), 60–63 | DOI | MR | Zbl
[12] F. G. Avkhadiev, “Hardy–Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442:2 (2016), 469–484 | DOI | MR | Zbl
[13] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | DOI | MR | Zbl
[14] F. G. Avkhadiev, “Integral inequalities in domains of hyperbolic type and their applications”, Sb. Math., 206:12 (2015), 1657–1681 | DOI | DOI | MR | Zbl
[15] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York–London–Paris, 1969, x+127 pp. | MR | Zbl
[16] P. Caldiroli, R. Musina, “Rellich inequalities with weights”, Calc. Var. Partial Differential Equations, 45:1-2 (2012), 147–164 | DOI | MR | Zbl
[17] L. Carleson, T. W. Gamelin, Complex dynamics, Universitext Tracts Math., Springer-Verlag, New York, 1993, x+175 pp. | DOI | MR | Zbl
[18] F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Front. Math., Birkhäuser Verlag, Basel, 2009, viii+156 pp. | DOI | MR | Zbl
[19] A. F. Beardon, Ch. Pommerenke, “The Poincaré metric of plane domains”, J. London Math. Soc. (2), 18:3 (1978), 475–483 | DOI | MR | Zbl
[20] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math. (Basel), 32 (1979), 192–199 | DOI | MR | Zbl
[21] T. Sugawa, “Various domain constants related to uniform perfectness”, Complex Variables Theory Appl., 36:4 (1998), 311–345 | DOI | MR | Zbl
[22] T. Sugawa, “Uniformly perfect sets: analytic and geometric aspects”, Sugaku Expositions, 16:2 (2003), 225–242 | MR | Zbl
[23] T. Sugawa, “Modulus techniques in geometric function theory”, J. Anal., 18 (2010), 373–397 | MR | Zbl
[24] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl
[25] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl
[26] E. B. Davies, “The Hardy constant”, Quart. J. Math.Oxford Ser. (2), 46 (1995), 417–431 | DOI | MR | Zbl
[27] F. G. Avkhadiev, I. K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russian Math. (Iz. VUZ), 58:2 (2014), 58–61 | DOI | MR | Zbl
[28] F. G. Avkhadiev, “Sharp constants in Hardy type inequalities”, Russian Math. (Iz. VUZ), 59:10 (2015), 53–56 | DOI | MR | Zbl