Automorphisms of certain affine complements in projective space
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 276-289

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every biregular automorphism of the affine algebraic variety ${\mathbb P}^M\setminus S$, $M\geqslant 3$, where $S\subset {\mathbb P}^M$ is a hypersurface of degree $m\geqslant M+1$ with a unique singular point of multiplicity $(m-1)$, resolved by one blow up, is a restriction of some automorphism of the projective space ${\mathbb P}^M$ preserving the hypersurface $S$; in particular, for a general hypersurface $S$ the group $\operatorname{Aut}({\mathbb P}^M\setminus S)$ is trivial. Bibliography: 24 titles.
Keywords: maximal singularity.
Mots-clés : affine complement, birational map
@article{SM_2018_209_2_a7,
     author = {A. V. Pukhlikov},
     title = {Automorphisms of certain affine complements in projective space},
     journal = {Sbornik. Mathematics},
     pages = {276--289},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a7/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Automorphisms of certain affine complements in projective space
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 276
EP  - 289
VL  - 209
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a7/
LA  - en
ID  - SM_2018_209_2_a7
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Automorphisms of certain affine complements in projective space
%J Sbornik. Mathematics
%D 2018
%P 276-289
%V 209
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_2_a7/
%G en
%F SM_2018_209_2_a7
A. V. Pukhlikov. Automorphisms of certain affine complements in projective space. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 276-289. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a7/