Mots-clés : affine complement, birational map
@article{SM_2018_209_2_a7,
author = {A. V. Pukhlikov},
title = {Automorphisms of certain affine complements in projective space},
journal = {Sbornik. Mathematics},
pages = {276--289},
year = {2018},
volume = {209},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a7/}
}
A. V. Pukhlikov. Automorphisms of certain affine complements in projective space. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 276-289. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a7/
[1] H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3:3 (1963/1964), 347–361 | DOI | MR | Zbl
[2] A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl
[3] V. A. Iskovskikh, Yu. I. Manin, “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86(128):1(9) (1971), 140–166 | MR | Zbl
[4] A. V. Pukhlikov, “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135(177):4 (1988), 472–496 ; A. V. Pukhlikov, “Birational automorphisms of a three-dimensional quartic with an elementary singularity”, Math. USSR Sbornik, 63:4 (1989), 457–482 | MR | Zbl | DOI
[5] M. Mella, “Birational geometry of quartic 3-folds. II. The importance of being ${\mathbb Q}$-factorial”, Math. Ann., 330:1 (2004), 107–126 | DOI | MR | Zbl
[6] C. Shramov, Birational automorphisms of nodal quartic threefolds, arXiv: 0803.4348
[7] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl
[8] Th. Eckl, A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 121–139 | DOI | MR | Zbl
[9] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 2001:541 (2001), 55–79 | DOI | MR | Zbl
[10] A. V. Pukhlikov, “Birationally rigid Fano complete intersections. II”, J. Reine Angew. Math., 2014:688 (2014), 209–218 | DOI | MR | Zbl
[11] A. V. Pukhlikov, “Biratsionalno zhestkie polnye peresecheniya kvadrik i kubik”, Izv. RAN. Ser. matem., 77:4 (2013), 161–214 | DOI | MR | Zbl
[12] J. Kollár, “Nonrational hypersurfaces”, J. Amer. Math. Soc., 8:1 (1995), 241–249 | DOI | MR | Zbl
[13] A. V. Pukhlikov, “Birational geometry of Fano hypersurfaces of index two”, Math. Ann., 366:1-2 (2016), 721–782 | DOI | MR | Zbl
[14] G. Freudenburg, P. Russell, “Open problems in affine algebraic geometry”, Affine algebraic geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 1–30 | DOI | MR | Zbl
[15] M. Gizatullin, “Klein's conjecture for contact automorphisms of the three-dimensional affine space”, Michigan Math. J., 56:1 (2008), 89–98 | DOI | MR | Zbl
[16] S. Lamy, S. Vénéreau, “The tame and the wild automorphisms of an affine quadric threefold”, J. Math. Soc. Japan, 65:1 (2013), 299–320 | DOI | MR | Zbl
[17] C. Bisi, J.-Ph. Furter, S. Lamy, “The tame automorphism group of an affine quadric threefold acting on a square complex”, J. Éc. Polytech. Math., 1 (2014), 161–223 | DOI | MR | Zbl
[18] M. Kh. Gizatullin, V. I. Danilov, “Avtomorfizmy affinnykh poverkhnostei. I”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 523–565 | MR | Zbl
[19] M. Kh. Gizatullin, V. I. Danilov, “Avtomorfizmy affinnykh poverkhnostei. II”, Izv. AN SSSR. Ser. matem., 41:1 (1977), 54–103 | MR | Zbl
[20] A. Dubouloz, S. Lamy, “Automorphisms of open surfaces with irreducible boundary”, Osaka J. Math., 52:3 (2015), 747–791 | MR | Zbl
[21] J.-Ph. Furter, S. Lamy, “Normal subgroup generated by a plane polynomial automorphism”, Transform. Groups, 15:3 (2010), 577–610 | DOI | MR | Zbl
[22] S. Cantat, S. Lamy, “Groupes d'automorphismes polynomiaux du plan”, Geom. Dedicata, 123 (2006), 201–221 | DOI | MR | Zbl
[23] S. Lamy, “Sur la structure dy groupe d'automorphismes de certaines surfaces affines”, Publ. Mat., 49:1 (2005), 3–20 | DOI | MR | Zbl
[24] A. V. Pukhlikov, “Ratsionalnye krivye s predpisannymi vetvyami”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 1995, no. 1, 22–25 | MR | Zbl