The growth of entire Dirichlet series in terms of generalized orders
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 241-257
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\alpha$ be a continuous function which increases to $+\infty$ on an infinite interval of the form $[x_0,+\infty)$. A necessary and sufficient condition is found on a sequence $(\lambda_n)_{n=0}^\infty$ increasing to $+\infty$ which ensures that for each Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, which is absolutely convergent in $\mathbb{C}$ the following relation holds:
$$
\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln M(\sigma,F))}{\sigma}=\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln\mu(\sigma,F))}{\sigma},
$$
where $M(\sigma,F)=\sup\{|F(s)|\colon \operatorname{Re} s=\sigma\}$ and ${\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}\colon n\geqslant 0\}}$ are the maximum modulus and maximum term of the series, respectively.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
entire Dirichlet series, maximum modulus, generalized order.
Mots-clés : maximum term
                    
                  
                
                
                Mots-clés : maximum term
@article{SM_2018_209_2_a5,
     author = {T. Ya. Hlova and P. V. Filevych},
     title = {The growth of entire {Dirichlet} series in terms of generalized orders},
     journal = {Sbornik. Mathematics},
     pages = {241--257},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a5/}
}
                      
                      
                    T. Ya. Hlova; P. V. Filevych. The growth of entire Dirichlet series in terms of generalized orders. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 241-257. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a5/
