The growth of entire Dirichlet series in terms of generalized orders
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 241-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\alpha$ be a continuous function which increases to $+\infty$ on an infinite interval of the form $[x_0,+\infty)$. A necessary and sufficient condition is found on a sequence $(\lambda_n)_{n=0}^\infty$ increasing to $+\infty$ which ensures that for each Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, which is absolutely convergent in $\mathbb{C}$ the following relation holds: $$ \varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln M(\sigma,F))}{\sigma}=\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln\mu(\sigma,F))}{\sigma}, $$ where $M(\sigma,F)=\sup\{|F(s)|\colon \operatorname{Re} s=\sigma\}$ and ${\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}\colon n\geqslant 0\}}$ are the maximum modulus and maximum term of the series, respectively. Bibliography: 10 titles.
Keywords: entire Dirichlet series, maximum modulus, generalized order.
Mots-clés : maximum term
@article{SM_2018_209_2_a5,
     author = {T. Ya. Hlova and P. V. Filevych},
     title = {The growth of entire {Dirichlet} series in terms of generalized orders},
     journal = {Sbornik. Mathematics},
     pages = {241--257},
     year = {2018},
     volume = {209},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a5/}
}
TY  - JOUR
AU  - T. Ya. Hlova
AU  - P. V. Filevych
TI  - The growth of entire Dirichlet series in terms of generalized orders
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 241
EP  - 257
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a5/
LA  - en
ID  - SM_2018_209_2_a5
ER  - 
%0 Journal Article
%A T. Ya. Hlova
%A P. V. Filevych
%T The growth of entire Dirichlet series in terms of generalized orders
%J Sbornik. Mathematics
%D 2018
%P 241-257
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2018_209_2_a5/
%G en
%F SM_2018_209_2_a5
T. Ya. Hlova; P. V. Filevych. The growth of entire Dirichlet series in terms of generalized orders. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 241-257. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a5/

[1] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[2] M. M. Sheremeta, Tsili ryadi Dirikhle, ISDO, Kiïv, 1993, 168 pp.

[3] J. F. Ritt, “On certain points in the theory of Dirichlet series”, Amer. J. Math., 50:1 (1928), 73–86 | DOI | MR | Zbl

[4] K. Sugimura, “Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen”, Math. Z., 29:1 (1929), 264–277 | DOI | MR | Zbl

[5] F. I. Geche, “Zamechanie o formule dlya opredeleniya lineinogo poryadka tseloi funktsii, predstavlennoi ryadom Dirikhle”, Ukr. matem. zhurn., 16:5 (1964), 678–681 | MR | Zbl

[6] T. Glova, P. Filevich, “Umova zastosovnosti formuli dlya obchislennya $R$-poryadku tsilikh ryadiv Dirikhle”, Visnik Lviv. un-tu. Ser. mekh.-matem., 2013, no. 78, 27–34

[7] P. V. Filevych, “On relations between the abscissa of convergence and the abscissa of absolute convergence of random Dirichlet series”, Mat. Stud., 20:1 (2003), 33–39 | MR | Zbl

[8] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, Inc., New York, 1961, x+181 pp. | MR | MR | Zbl | Zbl

[9] O. B. Skaskiv, “On certain relations between the maximum modulus and the maximal term of an entire Dirichlet series”, Math. Notes, 66:2 (1999), 223–232 | DOI | DOI | MR | Zbl

[10] P. V. Filevich, “On Valiron's theorem on the relations between the maximum modulus and the maximal term of an entire Dirichlet series”, Russian Math. (Iz. VUZ), 48:4 (2004), 63–69 | MR | Zbl