Mots-clés : Fourier transform
@article{SM_2018_209_2_a4,
author = {V. I. Gishlarkaev},
title = {A~method for representing solutions of the {Cauchy} problem for linear partial differential equations},
journal = {Sbornik. Mathematics},
pages = {222--240},
year = {2018},
volume = {209},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/}
}
V. I. Gishlarkaev. A method for representing solutions of the Cauchy problem for linear partial differential equations. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 222-240. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/
[1] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+626 pp. | MR | MR | Zbl | Zbl
[2] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp. | Zbl
[3] M. I. Vishik, A. V. Fursikov, Mathematical problems of statistical hydromechanics, Math. Appl. (Soviet Ser.), 9, Kluwer Acad. Publ., Dordrecht, 1988, vii+576 pp. | DOI | MR | MR | Zbl | Zbl
[4] E. Hopf, “Statistical hydromechanics and functional calculus”, J. Rational Mech. Anal., 1 (1952), 87–123 | MR | Zbl
[5] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl
[6] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[7] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl
[8] G. E. Shilov, Matematicheskii analiz, Vtoroi spetsialnyi kurs, 2-e izd., Izd-vo Mosk. un-ta, M., 1984, 208 pp. | MR | Zbl