A~method for representing solutions of the Cauchy problem for linear partial differential equations
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 222-240
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for solving the Cauchy problem for certain types of linear partial differential equations and pseudo-differential equations is proposed. A class of functions is specified for which the existence and uniqueness of solutions is proved. Applications of the results in applied problems are considered.
Bibliography: 8 titles.
Keywords:
Hopf equation, resolving operator, generalized functions with compact support.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{SM_2018_209_2_a4,
author = {V. I. Gishlarkaev},
title = {A~method for representing solutions of the {Cauchy} problem for linear partial differential equations},
journal = {Sbornik. Mathematics},
pages = {222--240},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/}
}
TY - JOUR AU - V. I. Gishlarkaev TI - A~method for representing solutions of the Cauchy problem for linear partial differential equations JO - Sbornik. Mathematics PY - 2018 SP - 222 EP - 240 VL - 209 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/ LA - en ID - SM_2018_209_2_a4 ER -
V. I. Gishlarkaev. A~method for representing solutions of the Cauchy problem for linear partial differential equations. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 222-240. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/