A~method for representing solutions of the Cauchy problem for linear partial differential equations
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 222-240

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for solving the Cauchy problem for certain types of linear partial differential equations and pseudo-differential equations is proposed. A class of functions is specified for which the existence and uniqueness of solutions is proved. Applications of the results in applied problems are considered. Bibliography: 8 titles.
Keywords: Hopf equation, resolving operator, generalized functions with compact support.
Mots-clés : Fourier transform
@article{SM_2018_209_2_a4,
     author = {V. I. Gishlarkaev},
     title = {A~method for representing solutions of the {Cauchy} problem for linear partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {222--240},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/}
}
TY  - JOUR
AU  - V. I. Gishlarkaev
TI  - A~method for representing solutions of the Cauchy problem for linear partial differential equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 222
EP  - 240
VL  - 209
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/
LA  - en
ID  - SM_2018_209_2_a4
ER  - 
%0 Journal Article
%A V. I. Gishlarkaev
%T A~method for representing solutions of the Cauchy problem for linear partial differential equations
%J Sbornik. Mathematics
%D 2018
%P 222-240
%V 209
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/
%G en
%F SM_2018_209_2_a4
V. I. Gishlarkaev. A~method for representing solutions of the Cauchy problem for linear partial differential equations. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 222-240. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a4/