Mots-clés : existence of a solution.
@article{SM_2018_209_2_a3,
author = {V. F. Vil'danova},
title = {Existence and uniqueness of a~weak solution of a~nonlocal aggregation equation with degenerate diffusion of general form},
journal = {Sbornik. Mathematics},
pages = {206--221},
year = {2018},
volume = {209},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a3/}
}
TY - JOUR AU - V. F. Vil'danova TI - Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form JO - Sbornik. Mathematics PY - 2018 SP - 206 EP - 221 VL - 209 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a3/ LA - en ID - SM_2018_209_2_a3 ER -
V. F. Vil'danova. Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 206-221. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a3/
[1] A. L. Bertozzi, D. Slepcev, “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion”, Commun. Pure Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl
[2] T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, G. V. Lowry, “Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions”, Environ. Sci. Technol., 41:1 (2007), 284–290 | DOI
[3] W. Peukert, H.-C. Schwarzer, F. Stenger, “Control of aggregation in production and handling of nanoparticles”, Chem. Eng. Process., 44:2 (2005), 245–252 | DOI
[4] S. Boi, V. Capasso, D. Morale, “Modeling the aggregative behavior of ants of the species Polyergus rufescens”, Nonlinear Anal. Real World Appl., 1:1 (2000), 163–176 | DOI | MR | Zbl
[5] R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, “Modeling group formation and activity patterns in self-organizing collectives of individuals”, Bull. Math. Biol., 69:5 (2007), 1537–1565 | DOI | MR | Zbl
[6] P. A. Milewski, Xu Yang, “A simple model for biological aggregation with asymmetric sensing”, Commun. Math. Sci., 6:2 (2008), 397–416 | DOI | MR | Zbl
[7] D. Morale, V. Capasso, K. Oelschläger, “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol., 50:1 (2005), 49–66 | DOI | MR | Zbl
[8] Ch. M. Topaz, A. L. Bertozzi, M. A. Lewis, “A nonlocal continuum model for biological aggregation”, Bull. Math. Biol., 68:7 (2006), 1601–1623 | DOI | MR | Zbl
[9] Ch. M. Topaz, A. L. Bertozzi, “Swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math., 65:1 (2004), 152–174 | DOI | MR | Zbl
[10] M. Burger, R. Fetecau, Yanghong Huang, “Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion”, SIAM J. Appl. Dyn. Syst., 13:1 (2014), 397–424 | DOI | MR | Zbl
[11] F. Kh. Mukminov, “Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation”, Ufa Math. J., 8:2 (2016), 44–57 | DOI | MR
[12] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl
[13] A. Blanchet, J. A. Carrillo, Ph. Laurençot, “Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions”, Calc. Var. Partial Differential Equations, 35:2 (2009), 133–168 | DOI | MR | Zbl
[14] J. A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao, Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, arXiv: 1603.07767v1
[15] M. D. Surnachev, V. V. Zhikov, “Stabilization of solutions to nonlinear parabolic equations of the $p$-Laplace type”, Russ. J. Math. Phys., 20:4 (2013), 523–541 | DOI | MR | Zbl
[16] M. D. Surnachev, “Stabilization of solutions to the Dirichlet problem in a cylindrical domain for the parabolic $p$-Laplacian”, J. Math. Sci. (N. Y.), 219:2 (2016), 275–299 | DOI | MR | Zbl
[17] È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40 | DOI | DOI | MR | Zbl
[18] L. M. Kozhevnikova, “Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains”, Izv. Math., 74:2 (2010), 325–345 | DOI | DOI | MR | Zbl
[19] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl
[20] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl | Zbl
[21] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl
[22] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl
[23] H. Brezis, Analyse fonctionnelle. Théorie et applications, Collect. Math. Appl. Maîtrise, Masson, Paris, 1983, xiv+234 pp. | MR | Zbl