@article{SM_2018_209_2_a2,
author = {V. I. Buslaev},
title = {Continued fractions with limit periodic coefficients},
journal = {Sbornik. Mathematics},
pages = {187--205},
year = {2018},
volume = {209},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/}
}
V. I. Buslaev. Continued fractions with limit periodic coefficients. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 187-205. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/
[1] E. B. Van Vlek, “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5:3 (1904), 253–262 | DOI | MR | Zbl
[2] H. S. Wall, “The behavior of certain Stieltjes continued fractions near the singular line”, Bull. Amer. Math. Soc., 48:6 (1942), 427–431 | DOI | MR | Zbl
[3] V. I. Buslaev, “O skhodimosti nepreryvnykh T-drobei”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Anatoliya Georgievicha Vitushkina, Tr. MIAN, 235, Nauka, M., 2001, 36–51 | MR | Zbl
[4] V. I. Buslaev, “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. Math., 39:1 (2013), 1–27 | DOI | MR | Zbl
[5] V. I. Buslaev, “O gankelevykh opredelitelyakh funktsii, zadannykh svoim razlozheniem v $P$-drob”, Ukr. matem. zhurn., 62:3 (2010), 315–326 | MR | Zbl
[6] V. I. Buslaev, “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. matem., 65:4 (2001), 35–48 | DOI | MR | Zbl
[7] V. I. Buslaev, “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | DOI | MR | Zbl
[8] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl
[9] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl
[10] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | Zbl
[11] H. Stahl, “Extremal domains associated with an analytic function”, I, Complex Variables Theory Appl., 4:4 (1985), 311–324 ; II, 325–338 | DOI | MR | Zbl | DOI | Zbl
[12] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[13] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 ; A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | MR | Zbl | DOI
[14] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI | Zbl
[15] A. V. Komlov, S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6(426) (2015), 211–212 | DOI | MR | Zbl
[16] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl
[17] S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5(431) (2016), 183–184 | DOI | MR | Zbl
[18] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2(428) (2016), 205–206 | DOI | MR | Zbl
[19] V. I. Buslaev, “Emkost ratsionalnogo proobraza kompakta”, Matem. zametki, 100:6 (2016), 790–799 | DOI | MR | Zbl
[20] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl
[21] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl
[22] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR | Zbl
[23] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl
[24] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Sbornik statei. K 110-letiyu so dnya rozhdeniya akademika Sergeya Mikhailovicha Nikolskogo, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI | MR | Zbl
[25] V. I. Buslaev, “Ob osobykh tochkakh meromorfnykh funktsii, zadavaemykh nepreryvnymi drobyami”, Matem. zametki, 103:4 (2018), 490–502 (to appear)
[26] J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39