Continued fractions with limit periodic coefficients
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 187-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.
Keywords: continued fractions, Hankel determinants, meromorphic extension, transfinite diameter.
@article{SM_2018_209_2_a2,
     author = {V. I. Buslaev},
     title = {Continued fractions with limit periodic coefficients},
     journal = {Sbornik. Mathematics},
     pages = {187--205},
     year = {2018},
     volume = {209},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Continued fractions with limit periodic coefficients
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 187
EP  - 205
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/
LA  - en
ID  - SM_2018_209_2_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Continued fractions with limit periodic coefficients
%J Sbornik. Mathematics
%D 2018
%P 187-205
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/
%G en
%F SM_2018_209_2_a2
V. I. Buslaev. Continued fractions with limit periodic coefficients. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 187-205. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/

[1] E. B. Van Vlek, “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5:3 (1904), 253–262 | DOI | MR | Zbl

[2] H. S. Wall, “The behavior of certain Stieltjes continued fractions near the singular line”, Bull. Amer. Math. Soc., 48:6 (1942), 427–431 | DOI | MR | Zbl

[3] V. I. Buslaev, “O skhodimosti nepreryvnykh T-drobei”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Anatoliya Georgievicha Vitushkina, Tr. MIAN, 235, Nauka, M., 2001, 36–51 | MR | Zbl

[4] V. I. Buslaev, “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. Math., 39:1 (2013), 1–27 | DOI | MR | Zbl

[5] V. I. Buslaev, “O gankelevykh opredelitelyakh funktsii, zadannykh svoim razlozheniem v $P$-drob”, Ukr. matem. zhurn., 62:3 (2010), 315–326 | MR | Zbl

[6] V. I. Buslaev, “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. matem., 65:4 (2001), 35–48 | DOI | MR | Zbl

[7] V. I. Buslaev, “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | DOI | MR | Zbl

[8] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[9] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[10] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | Zbl

[11] H. Stahl, “Extremal domains associated with an analytic function”, I, Complex Variables Theory Appl., 4:4 (1985), 311–324 ; II, 325–338 | DOI | MR | Zbl | DOI | Zbl

[12] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl

[13] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 ; A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | MR | Zbl | DOI

[14] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI | Zbl

[15] A. V. Komlov, S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6(426) (2015), 211–212 | DOI | MR | Zbl

[16] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl

[17] S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5(431) (2016), 183–184 | DOI | MR | Zbl

[18] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2(428) (2016), 205–206 | DOI | MR | Zbl

[19] V. I. Buslaev, “Emkost ratsionalnogo proobraza kompakta”, Matem. zametki, 100:6 (2016), 790–799 | DOI | MR | Zbl

[20] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[21] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl

[22] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR | Zbl

[23] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl

[24] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Sbornik statei. K 110-letiyu so dnya rozhdeniya akademika Sergeya Mikhailovicha Nikolskogo, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI | MR | Zbl

[25] V. I. Buslaev, “Ob osobykh tochkakh meromorfnykh funktsii, zadavaemykh nepreryvnymi drobyami”, Matem. zametki, 103:4 (2018), 490–502 (to appear)

[26] J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39