Continued fractions with limit periodic coefficients
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 187-205

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.
Keywords: continued fractions, Hankel determinants, meromorphic extension, transfinite diameter.
@article{SM_2018_209_2_a2,
     author = {V. I. Buslaev},
     title = {Continued fractions with limit periodic coefficients},
     journal = {Sbornik. Mathematics},
     pages = {187--205},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Continued fractions with limit periodic coefficients
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 187
EP  - 205
VL  - 209
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/
LA  - en
ID  - SM_2018_209_2_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Continued fractions with limit periodic coefficients
%J Sbornik. Mathematics
%D 2018
%P 187-205
%V 209
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/
%G en
%F SM_2018_209_2_a2
V. I. Buslaev. Continued fractions with limit periodic coefficients. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 187-205. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a2/