Existence of Lipschitz selections of the Steiner map
Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 145-162
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map $\mathrm{St}_n$, which associates with $n$ points of a Banach space $X$ the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere $S(X)$ of $X$, its dimension, and the number $n$. For $n\geqslant 4$ general conditions are obtained on the space $X$ under which $\mathrm{St}_n$ admits no Lipschitz selection. When $X$ is finite dimensional it is shown that, if $n\geqslant 4$ is even, the map $\mathrm{St}_n$ has a Lipschitz selection if and only if $S(X)$ is a finite polytope; this is not true if $n\geqslant 3$ is odd. For $n=3$ the (single-valued) map $\mathrm{St}_3$ is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.
Keywords: Banach space, Steiner point, Lipschitz selection, linearity coefficient.
@article{SM_2018_209_2_a0,
     author = {B. B. Bednov and P. A. Borodin and K. V. Chesnokova},
     title = {Existence of {Lipschitz} selections of the {Steiner} map},
     journal = {Sbornik. Mathematics},
     pages = {145--162},
     year = {2018},
     volume = {209},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_2_a0/}
}
TY  - JOUR
AU  - B. B. Bednov
AU  - P. A. Borodin
AU  - K. V. Chesnokova
TI  - Existence of Lipschitz selections of the Steiner map
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 145
EP  - 162
VL  - 209
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_2_a0/
LA  - en
ID  - SM_2018_209_2_a0
ER  - 
%0 Journal Article
%A B. B. Bednov
%A P. A. Borodin
%A K. V. Chesnokova
%T Existence of Lipschitz selections of the Steiner map
%J Sbornik. Mathematics
%D 2018
%P 145-162
%V 209
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2018_209_2_a0/
%G en
%F SM_2018_209_2_a0
B. B. Bednov; P. A. Borodin; K. V. Chesnokova. Existence of Lipschitz selections of the Steiner map. Sbornik. Mathematics, Tome 209 (2018) no. 2, pp. 145-162. http://geodesic.mathdoc.fr/item/SM_2018_209_2_a0/

[1] R. Courant, H. Robbins, What is mathematics? An elementary approach to ideas and methods, Oxford Univ. Press, New York, 1941, xix+521 pp. | MR | Zbl | Zbl

[2] A. L. Garkavi, V. A. Shmatkov, “On the Lamé point and its generalizations in a normed space”, Math. USSR-Sb., 24:2 (1974), 267–286 | DOI | MR | Zbl

[3] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl

[4] M. Baronti, E. Casini, P. L. Papini, “Equilateral sets and their central points”, Rend. Mat. Appl. (7), 13:1 (1993), 133–148 | MR | Zbl

[5] P. L. Papini, “Two new examples of sets without medians and centers”, Top, 13:2 (2005), 315–320 | DOI | MR | Zbl

[6] P. A. Borodin, “An example of nonexistence of a Steiner point in a Banach space”, Math. Notes, 87:4 (2010), 485–488 | DOI | DOI | MR | Zbl

[7] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR | Zbl

[8] L. Veselý, “Generalized centers of finite sets in Banach spaces”, Acta Math. Univ. Comenian. (N.S.), 66:1 (1997), 83–115 | MR | Zbl

[9] J.-P. Kahane, “Best approximation in $L^1(T)$”, Bull. Amer. Math. Soc., 80:5 (1974), 788–804 | DOI | MR | Zbl

[10] B. O. Björnestål, “Stability of Steiner points”, Constructive theory of functions of several variables (Math. Res. Inst., Oberwolfach, 1976), Lecture Notes in Math., 571, Springer, Berlin, 1977, 6–13 | DOI | MR | Zbl

[11] V. A. Kaminskii, “A Lipschitz condition for the Steiner–Lamé operator”, Math. Notes, 31:1 (1982), 42–47 | DOI | MR | Zbl

[12] B. B. Bednov, “Steiner points in the space of continuous functions”, Moscow Univ. Math. Bull., 66:6 (2011), 255–259 | DOI | MR | Zbl

[13] G. Sh. Rubinshtein, “Ob odnoi ekstremalnoi zadache v lineinom normirovannom prostranstve”, Sib. matem. zhurn., 6:3 (1965), 711–714 | MR | Zbl

[14] C. Benítez, M. Fernández, M. L. Soriano, “Location of the Fermat–Torricelli medians of three points”, Trans. Amer. Math. Soc., 354:12 (2002), 5027–5038 | DOI | MR | Zbl

[15] F. Deutsch, Wu Li, “Strong uniqueness, Lipschitz continuity, and continuous selections for metric projections in $L_1$”, J. Approx. Theory, 66:2 (1991), 198–224 | DOI | MR | Zbl

[16] F. Deutsch, Wu Li, Sung-Ho Park, “Characterizations of continuous and Lipschitz continuous metric selections in normed linear spaces”, J. Approx. Theory, 58:3 (1989), 297–314 | DOI | MR | Zbl

[17] P. A. Borodin, “The linearity coefficient of the metric projections onto a Chebyshev subspace”, Math. Notes, 85:1-2 (2009), 168–175 | DOI | DOI | MR | Zbl

[18] K. V. Chesnokova, “The mapping taking three points of a Banach space to their Steiner point”, Moscow Univ. Math. Bull., 71:2 (2016), 71–74 | DOI | MR | Zbl

[19] J. Diestel, Geometry of Banach spaces – selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–New York, 1975, xi+282 pp. | DOI | MR | MR | Zbl | Zbl

[20] K. Leichtweiss, Konvexe Mengen, Hochschultext, Springer-Verlag, Berlin–New York, 1980, 330 pp. | MR | MR | Zbl | Zbl

[21] Yu. Yu. Druzhinin, “Existence of a Lipschitz selection of the Chebyshev-centre map”, Sb. Math., 204:5 (2013), 641–660 | DOI | DOI | MR | Zbl